
A Finite Element Approach to Reaction-Diffusion Systems

Gavin Engelstad∗

gengelst@macalester.edu

Fall 2024

Abstract

Reaction-diffusion systems are a common framework to model important, real phenomena.

Most methods to solve such systems are limited in the shape of the region they can solve the

equation on. This paper uses an implementation of the finite element method to numerically

solve reaction-diffusion systems on any domain. I test the method against a baseline example

of a system on domains made up of 2D shapes and 3D surfaces. I also analyze the numerical

properties of the system and method, finding that the system develops Turing patterns that vary

across parameterizations and the method is very numerically stable, especially along smoother

parts of the solution.

1 Introduction

Reaction-diffusion systems model the spatiotemporal behavior of chemical and physical systems of

one of more components that react with each other and diffuse across space. Chemical reactions

[30, 9], the human nervous system [6], population dynamics [2], and the patterns that show up on

animal’s skins [28, 4] can all be described using versions of a reaction-diffusion system. Within a

system, reactions turn one substance into another as diffusion causes substances to spread out [16].
∗Thanks to Ashlyn Ryan for her chemistry help on this project. Replication code available at https://github.

com/GavinEngelstad/Reaction-Diffusion-FEM.

1

mailto:gengelst@macalester.edu
https://github.com/GavinEngelstad/Reaction-Diffusion-FEM
https://github.com/GavinEngelstad/Reaction-Diffusion-FEM

The solutions to reaction-diffusion systems present interesting patterns (dubbed “Turing Patterns”

[29]), moving fronts, and oscillations [26, 22, 28].

Because of the wide range of applications for reaction-diffusion systems, it is important to

have accurate and efficient computational methods to solve them. The main challenge to solving

reaction-diffusion systems is the nonlinear reaction term [21, 17]. This term drives the asymptotic

behavior and stability of the system [21], but it also introduces additional complexity, especially

for methods that abuse local, linear approximations of the system to solve it. Finite differences

[11], spectral [1, 3], and analytic [24] approaches can solve this problem with various degrees of

computational efficiency and accuracy, but are limited to only work for certain reaction-diffusion

systems or domain shapes.

This paper presents an approach to solving reaction-diffusion systems that uses the finite element

method (FEM). The method in this paper is heavily based on the mathematical approach of Sellami

et al. [23] and Lang and Walter [14]. I utilize finite elements to discretize the space derivative

and a combined implicit (backwards) and explicit (forwards) Euler method to discretize the time

derivative. Using a fine enough triangular mesh, the method is numerically stable and can be

applied to a wide range of domains, including standard disks and rectangles, more complicated

maze-like structures, and along the surface of 3D shapes.

2 The Finite Element Method

2.1 A General Reaction-Diffusion Equation and its Weak Form

The general form of a reaction-diffusion system is

∂tu = Γ∇2u+R(u)

where u(t, x, y) is a vector function describing the concentration of the reactants, Γ is a diagonal

matrix of diffusion coefficients, and R(u) is a potential nonlinear function describing the reactions

between the reactants [17]. I solve the system on the domain Ω and assume the PDE has Neumann

boundary conditions with derivative 0 for simplicity. The method could be extended to Neumann

2

conditions with nonzero gradient across the boundary or Dirichlet conditions, but this is beyond

the scope of this paper. Assuming the systems contains N total reactions, each equation in the

system is

∂tun = γn∇2un + rn
(
{um}Nm=1

)
, n ∈ {1, 2, . . . , N}.

The FEM solves for a solution to the weak form of the PDE [8]. The weak form is given by

multiplying by some function v and integrating across the whole domain, which gets

∫
Ω
v∂tundA =

∫
Ω
v
[
γn∇2un + rn

(
{um}Nm=1

)]
dA.

By the product rule for gradients and Neumann boundary conditions, we know

∫
Ω
vγn∇2un = −γn

∫
Ω
∇v · ∇undA.

Therefore, the weak form is

∫
Ω
v∂tundA = −γn

∫
Ω
∇v · ∇undA+

∫
Ω
vrn

(
{um}Nm=1

)
dA.

2.2 Discretization

To discretize the spacial derivative, I triangulate Ω. Figure 2.1 gives examples of what potential

triangulations look like for a variety of domains. Panel 2.1a shows this discretization for 2D domains

including a square, disk, and maze-like structure and Panel 2.1b shows this discretization along the

surface of 3D objects, including a sphere and a torus.

For each vertex vi in the triangulation, I define a function ψi such that

ψi(vi) = 1

ψi(vj) = 0, j 6= i

and ∇ψi is constant along a triangle T . An example of ψi for a vertex in the triangulation is in

Figure 2.2. These functions will approximate the weak form of the PDE and the nonlinear reactions.

3

Figure 2.1: Triangulations of different domains

(a) 2D Domains

(b) 3D Surface Domains

To discretize un, let un,i(t) approximate u(t, vi). Then, we have

ûn(t, x, y) =
∑
i

ψi(x, y)un,i(t) ≈ u(t, x, y).

Similarly, we can approximate rn as

r̂n(t, x, y) =
∑
i

ψi(x, y)rn
(
{um,i(t)}Nm=1

)
≈ rn({um(x, y, t)}Nm=1).

This approximation requires the solution for un and rn to be adequately smooth across space

and the triangulation to have a fine enough mesh. I analyze these assumptions in Section 3.4 by

solving systems with increasingly fine discretizations to get closer to the exact answer. Using these

4

Figure 2.2: The function ψi at a vertex

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

approximations and v = ψi in the weak form gets

∑
j

∂tun,j

∫
Ω
ψiψjdA = −γn

∑
j

un,j

∫
Ω
∇ψi · ∇ψjdA+

∑
j

rn
(
{um,j(t)}Nm=1

) ∫
Ω
ψiψjdA

which represents the spatially discretized version of the system.

The temporal discretization is chosen to handle potential nonlinearities in the reaction function

as well as maximize numerical stability. Specifically, I combine an explicit (forwards) Euler method

to discretize the reaction step and an implicit (backwards) Euler method to discretize the diffusion

step [23]. The explicit Euler step evaluates the reaction with known quantities to hangle nonlineari-

ties before setting up a linear system, and the implicit Euler step maximizes the numerical stability

of the solution [7]. Letting utn,i = un,i(t) at some discrete time step t, the time-discretized equation

5

is

∑
j

utn,j

(∫
Ω
ψiψjdA+∆tγn

∫
Ω
∇ψi · ∇ψjdA

)
=

∑
j

(
ut−∆t
n,j +∆trn

(
{ut−∆t

m,j }Nm=1

))∫
Ω
ψiψjdA.

2.3 Setting up a Linear System

To solve the time-discretized equation, I turn it into a linear algebra problem. I define the damping

matrix D so that

di,j =

∫
Ω
ψiψjdA

and the stiffness matrix S so that

si,j =

∫
Ω
∇ψi · ∇ψjdA.

Since di,j = 0 and si,j = 0 whenever vi and vj don’t share a triangle, the damping and stiffness

matrices have a sparse structure that makes computation with them fast even on very fine trian-

gulations of Ω. Appendix A derives expressions for di,j and si,j in cases where vi and vj share at

least one triangle.

Then, defining ut
n as the vector with entries utn,j , the equation becomes the linear system

(D+∆tγnS)u
t
n = D

(
ut−∆t
n +∆trn

(
{ut−∆t

m }Nm=1

))
which allows me to solve for the solution at t given a solution at time t −∆t. The function rn is

vectorized and because D+∆tγnS is sparse, symmetric, and positive-definite, I use the conjugate

gradient method to solve for ut
n [19]. Together, this allows me to quickly solve for each time step.

Therefore, to solve the system I start with some initial condition u0
n for each n. In the sections

that follow, this initial condition is chosen to be random noise, although any initial condition could

be used. Then, I solve the linearized version of the PDE for each n to iterate to the next time

step. Repeating this process to some final T allows me to efficiently and accurately solve the

reaction-diffusion PDE on any triangulated domain.

6

3 Solving a System

3.1 A Baseline System

For this paper, I solve the system in Othmer et al. [20] and Jeong et al. [12]. By replacing the

reaction function, the method can be extended to any sufficiently smooth reaction-diffusion system.

This includes Turing’s initial version [28, 4] and other activator-inhibitor equations [13, 18] which

it has been tested against. The system I solve is given by

∂u

∂t
= γu∇2u+ k1

(
v − uv

1 + v2

)
∂v

∂t
= γv∇2v + k2 − v − 4uv

1 + v2
.

Like [12], I fix γu = 1 and k2 = 11 in all simulations. I vary γv and k1 across simulations to

create different Turning patterns, but we always have γv < γu. The time step is set to ∆t = 0.01,

and all systems are iterated until t = 1, 000, at which point they have reached a steady state. I

triangulate so that there are 250 points per square unit of the domain I solve the PDE on. I plot

the solutions to u, though v makes the same patterns.

3.2 Solutions

Figure 3.1 plots the solution to the reaction-diffusion system at different time steps on a square and

circular domain with γv = 0.02 and k1 = 9. The left panel plots the initial condition, the middle

panel plots an intermediate step during the reaction, and the right panel plots the system at steady

state. I set the initial condition to random noise. At t = 10, the reaction starts to progress, and

we see patterns and ‘hotspots’ emerge. The patterns that exist, however, lack clear definition. In

the steady state, we see well-defined lines that form clear Turing patterns.

At each time step, the system makes similar shapes on the circular and square domains. The

intermediate step patterns both have similarly sized hotspots, and the Turing patterns that develop

have a similar structure being made of curved-lines with similar width. I explore this further in

Section 4 with more complicated domains and arrive at the same result.

7

Figure 3.1: Solutions to the reaction-diffusion system

t = 0 t = 10 t = 1, 000

(a) 10× 10 square domain

t = 0 t = 10 t = 1, 000

(b) Radius 5 circular domain

3.3 Parameters

The chosen parameterization has significant effects on the shape of the Turing patterns that develop.

Specifically, alternate choices for the diffusion coefficient for v and the feed concentration k1 can

change significant features of the patterns.

Figure 3.2 shows how parameter choice affects the Turing patterns in γv − k1 space on a square

domain. With higher diffusion, the patterns are less defined, having more fuzziness along the

boundary, and are wider. With low γv, spots emerge since the diffusion is not strong enough to

merge the disjoint elements together. Increasing k1 merges the spots together again forming stripes,

8

Figure 3.2: 10× 10 square steady states for different γv and k1

11
9

7

0.01

5

0.02 0.03 0.04

γu

k
1

but does not have the same effect on the width and definition of the patterns. With high γv and k1

the patterns become dominated by high-concentrations of u (yellow) instead of low concentrations

(purple).

The parameterization has the same effect on alternate domains. Figure 3.3 shows the same

parameterizations on a circular domain. Higher γv similarly increases the width and decreases the

9

Figure 3.3: Radius 5 circle steady states for different γv and k1

11
9

7

0.01

5

0.02 0.03 0.04

γu

k
1

definition of the Turing patterns, and higher k1 merges the patterns together to form lines.

3.4 Error Analysis

By discretizing the grid, I am introducing potential numerical error into the solution. I analyze this

by comparing solutions on less granular triangulations to the solution on a very fine triangulation.

10

Denoting ûN the finite element approximation for u on a grid with an average of N vertices along

a 1 unit path across edges in the triangulation, I calculate

εN =

∫
Ω

∣∣∣ûN (t, x, y)− ûN (t, x, y)
∣∣∣ dA

for some large t so that the system has reached the steady state and large N to get as accurate

an approximation as possible of the exact solution. I use N = 50, which means each square unit

in the domain has approximately 2,500 vertices in it. I evaluate ûN with k1 = 9 and γv = 0.02 on

an evenly spaced 100× 100 grid then use a Riemann sum to calculate the integral. For the initial

condition, I use OpenSimplex noise [27]. This ensures all N have the same u at t = 0.

Figure 3.4 gives the results of this analysis. Panel 3.4a shows the resulting steady states using

different N . Qualitatively, the Turing patterns that develop look very similar across N . With low

N , the lines do form different connections, especially in the top right corner where the lines make

a different angle when N = 16 and N = 50 versus when N = 5. The patterns in the N = 16 and

N = 50 case are visually identical.

Panel 3.4b shows the total error for different values ofN and the comparison between theN = 16

and N = 50 case. In general, a larger value of N reduces error, although there is diminishing returns

since the magnitude of the error decrease is lower at higher N . For the N = 16 case, total error

is low across the whole domain and follows wave-like patterns through the domain. Comparing

the locations of the error with the patterns in Panel 3.4a, the points with the highest error are

located on the boundaries of the Turing patterns. This is consistent with the fact that the FEM

approximation is worse in areas where the function is less smooth.

4 More Complex Domains

The main advantage of the FEM over finite differences or spectral methods is the ability to handle

oddly shaped domains [5]. This section explores solutions to reaction-diffusion equations on oddly

shaped domains that would be hard or even impossible to solve using other approaches.

11

Figure 3.4: Numerical error in the solutions on a 10× 10 square domain

N = 5 N = 16 N = 50

(a) Calculated steady state with different N

6 8 10 12 14 16

N

5

10

15

20

ε

|û50 − û16|

0.02

0.04

0.06

0.08

0.10

(b) (Left) Error by N ; (Right) Error over Ω for N = 16

4.1 A 2D Maze

In 2D space, I show this using a domain with a maze-like shape. By defining a triangulation within

the space (Figure 2.1), the finite element approach can solve the reaction-diffusion system within

this abnormal shape.

Figure 4.1 shows the solution to the PDE with k1 = 9 and γv = 0.02 on this domain. Starting

from random noise at t = 0, the solution starts to form structure by t = 10, and form Turing

patterns at t = 1, 000 in the steady state. Interestingly, the lines within the Turing patterns are

12

Figure 4.1: Solution to the reaction-diffusion system on a 10× 10 maze-like domain

t = 0 t = 10 t = 1, 000

almost all either parallel or perpendicular to the boundary. Because the spacing between lines

is relatively consistent, the patterns roughly line up with each other. They do slightly misalign,

however, especially on the right side, demonstrating the effect of the domain choice on the solution.

4.2 3D Surfaces

Because the surface of 3D shapes can also be triangulated, I can also use the FEM to solve the

system along 3D surfaces. My approach ignores the curvature of the surface, which can affect the

shape of the patterns that emerge [25, 15]. Still, it gives a good approximation for the solution of

the system on the surface.

Figure 4.2 shows the solution to the system with k1 = 9 and γv = 0.02 on two 3D surfaces.

Panel 4.2a shows the solution along a sphere and Panel 4.2b shows the solutions along a torus.

Each point in the triangulation for both shapes is connected to its neighbors with no seam, unlike

[15], so we allow for diffusion across the whole domain.

The solutions on both surfaces follow the same general pattern as the solution on 2D domains

in Figures 3.1 and 4.1. At t = 0, the domain is covered in random noise. Then, at t = 10, we

see basic structure emerging before clear Turing patterns appear at t = 1, 000 in the steady state.

On the torus, the lines in the Turing patterns approximately cycle around the shape while on the

sphere more complex patterns develop.

13

Figure 4.2: Solution to the reaction-diffusion system on 3D surfaces

t = 0 t = 10 t = 1, 000

(a) Radius 5 sphere domain

t = 0 t = 10 t = 1, 000

(b) R = 3.5, r = 1.5 torus domain

5 Conclusion

This paper presets a finite element approach to solving reaction-diffusion PDEs. I discretize the

spacial derivative for the diffusion term according to the finite element method. Then, I combine the

implicit and explicit Euler methods to calculate numerically stable time steps given the nonlinear

reaction. Because I use the FEM, I can solve reaction-diffusion systems on a wide range of domains,

including ones with complex structure and on 3D surfaces.

Across all surfaces, the reaction-diffusion equation develops similarly from random noise, to

diffuse hotspots, and finally to well-defined Turing patterns. The Turing patterns that develop

14

depend on the parameter choices within the PDE, but the general qualitative properties, including

the shape and width, of the patterns are robust across square and circle domains. Exploration into

the numerical properties of the method suggest it generally gets a reasonable degree of accuracy,

but can have some error, especially on the less smooth parts of the function.

To expand on this method, future projects should search for more accurate solutions with more

realistic applications. One approach would be to implement the spectral element method [10] and

use polynomials in place of my linear ψi functions. Alternatively, on 3D domains the curvature of

the domain can affect the solution to the PDE [25, 15], so future work could look into the effect

of this curvature. Specific to animal pigmentation patterns, a more realistic model would also

incorporate the effect of tissue growth in reaction-diffusion systems [4].

15

References

[1] Alfonso Bueno-Orovio, David Kay, and Kevin Burrage. “Fourier spectral methods for fractional-

in-space reaction-diffusion equations”. In: BIT Numerical mathematics 54 (2014), pp. 937–

954.

[2] Ryan St Clair, Andrew Nevai, and Richard Schugart. “A reaction-diffusion model for pop-

ulation dynamics in patchy landscapes”. In: Journal of Differential Equations 405 (2024),

pp. 247–286.

[3] Richard V Craster and Roberto Sassi. “Spectral algorithms for reaction-diffusion equations”.

In: arXiv preprint arXiv:1810.07431 (2018).

[4] Marcelo De Gomensoro Malheiros, Henrique Fensterseifer, and Marcelo Walter. “The leopard

never changes its spots: realistic pigmentation pattern formation by coupling tissue growth

with reaction-diffusion”. In: ACM Transactions on Graphics (TOG) 39.4 (2020), pp. 63–1.

[5] ID Erhunmwun and UB Ikponmwosa. “Review on finite element method”. In: Journal of

Applied Sciences and Environmental Management 21.5 (2017), pp. 999–1002.

[6] Richard FitzHugh. “Impulses and physiological states in theoretical models of nerve mem-

brane”. In: Biophysical journal 1.6 (1961), pp. 445–466.

[7] Gerald B Folland. Introduction to partial differential equations. Princeton university press,

2020.

[8] B.G. Galerkin. Rods and Plates: Series in Some Questions of Elastic Equilibrium of Rods and

Plates. National Technical Information Service, 1968. url: https://books.google.com/

books?id=gXLCHAAACAAJ.

[9] Michael D Graham, Samuel L Lane, and Dan Luss. “Temperature pulse dynamics on a cat-

alytic ring”. In: The Journal of Physical Chemistry 97.29 (1993), pp. 7564–7571.

[10] Muhammad Bilal Hafeez and Marek Krawczuk. “A review: Applications of the spectral fi-

nite element method”. In: Archives of Computational Methods in Engineering 30.5 (2023),

pp. 3453–3465.

16

https://books.google.com/books?id=gXLCHAAACAAJ
https://books.google.com/books?id=gXLCHAAACAAJ

[11] David Hoff. “Stability and convergence of finite difference methods for systems of nonlinear

reaction-diffusion equations”. In: SIAM Journal on Numerical Analysis 15.6 (1978), pp. 1161–

1177.

[12] Darae Jeong et al. “Numerical simulation of the zebra pattern formation on a three-dimensional

model”. In: Physica A: Statistical Mechanics and its Applications 475 (2017), pp. 106–116.

[13] Amit N Landge et al. “Pattern formation mechanisms of self-organizing reaction-diffusion

systems”. In: Developmental biology 460.1 (2020), pp. 2–11.

[14] Jens Lang and Artur Walter. “A finite element method adaptive in space and time for non-

linear reaction-diffusion systems”. In: IMPACT of Computing in Science and Engineering 4.4

(1992), pp. 269–314.

[15] D Assaely León-Velasco and Guillermo Chacón-Acosta. “Full Finite Element Scheme for

Reaction-Diffusion Systems on Embedded Curved Surfaces in R3”. In: Advances in Math-

ematical Physics 2021.1 (2021), p. 8898484.

[16] Angran Li et al. “Reaction diffusion system prediction based on convolutional neural network”.

In: Scientific reports 10.1 (2020), p. 3894.

[17] RH Martin Jr and Michel Pierre. “Nonlinear reaction-diffusion systems”. In: Mathematics in

science and engineering. Vol. 185. Elsevier, 1992, pp. 363–398.

[18] Hans Meinhardt and Alfred Gierer. “Pattern formation by local self-activation and lateral

inhibition”. In: Bioessays 22.8 (2000), pp. 753–760.

[19] John L Nazareth. “Conjugate gradient method”. In: Wiley Interdisciplinary Reviews: Com-

putational Statistics 1.3 (2009), pp. 348–353.

[20] Hans G Othmer et al. “The intersection of theory and application in elucidating pattern

formation in developmental biology”. In: Mathematical modelling of natural phenomena 4.4

(2009), pp. 3–82.

[21] Chia-Ven Pao. “On nonlinear reaction-diffusion systems”. In: Journal of Mathematical Anal-

ysis and Applications 87.1 (1982), pp. 165–198.

17

[22] John Rinzel and David Terman. “Propagation phenomena in a bistable reaction-diffusion

system”. In: SIAM Journal on Applied Mathematics 42.5 (1982), pp. 1111–1137.

[23] Hedi Sellami et al. “Accelerating the finite-element method for reaction-diffusion simulations

on GPUs with CUDA”. In: Micromachines 11.9 (2020), p. 881.

[24] Kathrin Spendier and VM Kenkre. “Analytic solutions for some reaction-diffusion scenarios”.

In: The Journal of Physical Chemistry B 117.49 (2013), pp. 15639–15650.

[25] Michael F Staddon. “How the zebra got its stripes: Curvature-dependent diffusion orients

Turing patterns on three-dimensional surfaces”. In: Physical Review E 110.3 (2024), p. 034402.

[26] István Szalai and Patrick De Kepper. “Turing patterns, spatial bistability, and front instabil-

ities in a reaction- diffusion system”. In: The Journal of Physical Chemistry A 108.25 (2004),

pp. 5315–5321.

[27] Yann Thorimbert and Bastien Chopard. “Polynomial methods for fast procedural terrain

generation”. In: arXiv preprint arXiv:1610.03525 (2016).

[28] Alan Mathison Turing. “The chemical basis of morphogenesis”. In: Bulletin of mathematical

biology 52 (1990), pp. 153–197.

[29] Sean T Vittadello et al. “Turing pattern design principles and their robustness”. In: Philo-

sophical Transactions of the Royal Society A 379.2213 (2021), p. 20200272.

[30] Anatol M Zhabotinsky. “Belousov-zhabotinsky reaction”. In: Scholarpedia 2.9 (2007), p. 1435.

18

A The Stiffness and Damping Matrices

A.1 The Area of a Triangle

Given a triangle T with corners (xi, yi, zi), (xj , yj , zj), and (xk, yk, zk), the area of the triangle AT

is

AT =
1

2

∣∣∣∣∣∣∣∣∣∣

xj − xi

yj − yi

zj − zi

×

xk − xi

yk − yi

zk − zi

∣∣∣∣∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣∣∣∣∣
(yj − yi)(zk − zi)− (yk − yi)(zj − zi)

(xk − xi)(zj − zi)− (xj − xi)(zk − zi)

(xj − xi)(yk − yi)− (xk − xi)(yj − yi)

∣∣∣∣∣∣∣∣∣∣
.

In the 2D case where zi = zj = zk, this becomes1

AT =
1

2
[(xj − xi)(yk − yi)− (xk − xi)(yj − yi)] =

1

2
(xiyj + xjyk + xkyi − xiyk − xkyj − xjyi) .

A.2 The Damping Matrix

The damping matrix D is defined so that

di,j =

∫
Ω
ψiψjdA.

I consider a triangle T with both vi and vj as vertices to T . From the solution for T , we know

di,j =
∑

{T :vi,vj∈T}

∫
T
ψiψjdA.

To calculate this integral over T , we will first define an affine transformation from T 0 to T

where T 0 is a right triangle with vi = (0, 0), vj = (1, 0), and vk = (0, 1) (Figure A.1). To map from

x̃, ỹ on T 0 to T , we first scale and rotate according to the linear transformation

xj − xi xk − xi

yj − yi yk − yi

x̃
ỹ

1Technically, this could be the negative of the area and to get the actual area you need to take an absolute value.

Solving it this way makes the next steps easier, however.

19

Figure A.1: Transformation from T 0 to T .

(0, 0) (1, 0)

(0, 1)

x

y

(a) Initial triangle T 0

(0, 0)

(xj − xi, yj − yi)

(xk − xi, yk − yi)

x

y

(b) Rotated and scaled

(xi, yi)

(xj , yj)

(xk, yk)

x

y

(c) Translated to T

then add (xi, yi)
> to get to T . Therefore, to get from x̃, ỹ on T 0 to x, y on T , we use

x = xi + (xj − xi)x̃+ (xk − xi)ỹ

y = yi + (yj − yi)x̃+ (yk − yi)ỹ.

The Jacobian of this transformation xj − xi xk − xi

yj − yi yk − yi

has determinant∣∣∣∣∣∣∣

xj − xi xk − xi

yj − yi yk − yi

∣∣∣∣∣∣∣ = (xj − xi)(yk − yi)− (xk − xi)(yj − yi) = 2AT .

Therefore, we get

∫
T
ψi(x, y)ψj(x, y)dydx = 2At

∫
T 0

ψi(x̃, ỹ)ψj(x̃, ỹ)dỹdx̃x.

On T 0, we have

ψi(x̃, ỹ) = 1− x̃− ỹ and ψj(x̃, ỹ) = x̃.

20

Therefore, we know

∫
T
ψi(x, y)ψi(x, y)dydx = 2AT

∫
T 0

ψi(x̃, ỹ)ψi(x̃, ỹ)dỹdx̃

= 2AT

∫ 1

0

∫ 1−x̃

0
(1− x̃− ỹ)2dỹdx̃

= 2AT

∫ 1

0

∫ 1−x̃

0

[
1− 2x̃− 2ỹ + 2x̃ỹ + x̃2 + ỹ2

]
dỹdx̃

=
2

3
AT

∫ 1

0
(1− x̃)3dx̃

=
2

3
AT

∫ 0

1
x̂3(−1)dx̂, x̂ = 1− x̃

=
1

6
AT

and

∫
T
ψI(x, y)ψj(x, y)dydx = 2AT

∫
T 0

ψi(x̃, ỹ)ψj(x̃, ỹ)dỹdx̃

= 2AT

∫ 1

0

∫ 1−x̃

0
(1− x̃− ỹ)x̃dỹdx̃

= 2AT

∫ 1

0
x̃

∫ 1−x̃

0
(1− x̃− ỹ)dỹdx̃

= AT

∫ 1

0
x̃(1− x̃)2dx̃

= AT

∫ 0

1
(x̂2 − x̂3)(−1)dx̂, x̂ = 1− x̃

=
1

12
AT .

Along a 3D surface, the same equation holds. We use the transformation

x = xi + (xj − xi)x̃+ (xk − xi)ỹ

y = yi + (yj − yi)x̃+ (yk − yi)ỹ

z = zi + (zj − zi)x̃+ (zk − zi)ỹ

21

Figure A.2: ~w on a triangle

vi

vj

vk
~w

and the fact that the change in area elements is the ratio of the areas

AT

AT 0

=
AT
1
2

= 2AT

to get to the same result.

A.3 The Stiffness Matrix

The stiffness matrix S is defined so that

si,j =

∫
Ω
∇ψi · ∇ψjdA.

Like with the damping matrix, I will calculate the integral over a single triangle T . Then, we can

calculate

si,j =
∑

{T :vi,vj∈T}

∫
T
∇ψi · ∇ψjdA.

To calculate the integral over T , recognize ∇ψi is constant over T . Therefore, we know

∫
T
∇ψi · ∇ψjdA = AT∇ψi · ∇ψj .

We know ∇ψi is a vector pointing into vi orthogonal to vj − vk. Defining ~w to be orthogonal to

vj − vk such that

vi − vj = λ(vj − vk) + ~w

22

for some scalar λ, we know

~w = vi − vj −
(vi − vj) · (vj − vk)

(vj − vk) · (vj − vk)
(vj − vk).

An example of this is given in Figure A.2. Then, we know 1

|~w|
is the magnitude of the gradient2

and 1

|~w|
~w is the direction of the gradient. Therefore, the gradient is

∇ψi =
1

|~w|2
~w.

In the 3D surface case, I directly implement this formula to calculate the stiffness matrix. In

the 2D case, the ~w vector is

~w =

xi − xj

yi − yj

− (xi − xj)(xj − xk) + (yi − yj)(yj − yk)

(xj − xk)2 + (yj − yk)2

xj − xk

yj − yk

=

1

(xj − xk)2 + (yj − yk)2

(xi − xj)(yj − yk)
2 − (xj − xk)(yi − yj)(yj − yk)

(xj − xk)
2(yi − yj)− (xi − xj)(xj − xk)(yj − yk)

=

(xi − xj)(yj − yk)− (xj − xk)(yi − yj)

(xj − xk)2 + (yj − yk)2

yj − yk

xk − xj

=
xiyj + xjyk + xkyi − xiyk − xkyj − xjyi

(xj − xk)2 + (yj − yk)2

yj − yk

xk − xj

=

2AT

(xj − xk)2 + (yj − yk)2

 yj − yk

xk − xj .

2Shoutout rise

run .

23

Then, the gradient is

∇ψi =
1

|~w|2
~w

=
(xj − xk)

2 + (yj − yk)
2

2AT

yj − yk

xk − xj

 ·

yj − yk

xk − xj

−1yj − yk

xk − xj

=

1

2AT

yj − yk

xk − xj

 .

This means the integrals over the gradients become

∫
T
∇ψi · ∇ψidA =

1

4AT

(
(yj − yk)

2 + (xk − xj)
2
)

and ∫
T
∇ψi · ∇ψidA =

1

4AT
((yj − yk)(yk − yi) + (xk − xj)(xi − xk))

which I plug into the stiffness matrix.

24

	Introduction
	The Finite Element Method
	A General Reaction-Diffusion Equation and its Weak Form
	Discretization
	Setting up a Linear System

	Solving a System
	A Baseline System
	Solutions
	Parameters
	Error Analysis

	More Complex Domains
	A 2D Maze
	3D Surfaces

	Conclusion
	The Stiffness and Damping Matrices
	The Area of a Triangle
	The Damping Matrix
	The Stiffness Matrix

