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Abstract

This paper uses network techniques, especially centrality analysis, to examine the implica-

tions of the Francis Scott Key Bridge collapse. These effects are analyzed on the road network

for the entire Baltimore Metro Area using intersections as nodes and road segments as edges.

We found the global network effects of the collapse were small, but that there significant local

effects on the ability to traverse the network from intersections near the bridge and traffic for

routes extending from the bridge. We also employ a utilization-weighted analysis to find similar

but even more localized results.

1 Introduction

On March 26, 2024, the container ship Dali struck one of the concrete supports holding up the

Francis Scott Key Bridge and caused it to collapse. The incident caused six deaths1 and caused

trade through the port of Baltimore, one of the largest ports in the country, to grind to a halt,

costing an estimated $15 million per day (Hassan and Edmonds 2024; Al Jazeera 2024).

Pre-collapse, the Francis Scott Key Bridge was an essential part of the Baltimore road system.

It was the final link in Interstate 695, or the Baltimore Beltway, a major highway that wraps
∗Data and replication files for the document and analysis are available at https://github.com/GavinEngelstad/

NetSciBaltimoreBridge. If you have questions, contact gengelst@maclester.edu.
1. Only four of the six bodies have been found. Still, the remaining two were on the bridge during the collapse

and are presumed dead (Hassan and Edmonds 2024).
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around the City of Baltimore. Spanning the entire Port of Baltimore waterway, the bridge was

1.6 miles (2.6 km) across and the third-longest continuous truss bridge in the world (Parry 2024).

Every day, approximately 30 thousand vehicles crossed the bridge, making it an important piece of

infrastructure for thousands of commuters every day (MDOT 2024). Post collapse, the Maryland

Department of Transportation issued a traffic warning and has observed a 7-11% increase in traffic

along alternate major highway routes across and around the port (MDOT 2024; Domen 2024).

This paper will examine the effects of the bridge collapse on the Baltimore Metro Area (BMA)

road system using tools from complex network analysis. The rest of the paper will proceed as

follows: Section 2 will explore existing literature on the use of complex networks to analyze road

network structures and robustness. Section 3 will outline the methods for our analysis of the effects

of the bridge collapse on the road network. Section 4 will present the data sources that we’ll use

to create and examine the network. Section 5 will give the results to our analysis. Finally, Section

6 will conclude.

2 Literature Review

Road systems have a long history of being represented as a network. The most popular method

of this, the primal approach, uses intersections as nodes and roads as links in the network (Porta,

Crucitti, and Latora 2006b; Ding et al. 2019). This method is seen as more comprehensive, realistic,

and feasible than the alternative dual approach to modeling the network (Porta, Crucitti, and

Latora 2006b, 2006a). This approach is implemented into many software packages and databases

(Esri, n.d.; Boeing 2017) and has the advantage that it allows for analysis that considers distance,

versus solely looking at the topological properties of the network (Ding et al. 2019; Erath, Löchl,

and Axhausen 2009; Wang, Antipova, and Porta 2011; Barthelemy and Flammini 2009).

Using this network, centrality measures can be very predictive of the real world context around

roads and intersections. Typically, multiple centrality assessment (MCA) methods that analyze

a number of centrality measures are used to give a comprehensive view of the network (Porta,

Crucitti, and Latora 2006b; Porta and Latora 2007). Closeness centrality, when applied globally,

is highly correlated with land-use, but fails to be meaningful looking at only a subset of a larger
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network (Wang, Antipova, and Porta 2011; Porta, Crucitti, and Latora 2006b; Barthelemy and

Flammini 2009). Betweenness centrality is very effective at identifying important parts of longer

routes to traverse large urban networks (Porta, Crucitti, and Latora 2006b). Straightness centrality,

a modification of closeness centrality where the distance along the network is divided the Euclidean

distance between nodes, identifies both areas with high land-use and important routes while being

robust on network subsets (Porta, Crucitti, and Latora 2006b; Wang, Antipova, and Porta 2011).

Information centrality, which measures the drop in global efficiency when a piece of the network

is removed, is a comprehensive measure of node importance and identifies nodes that have high

centrality from all other measures (Porta, Crucitti, and Latora 2006b). Eigenvector centrality is

able to identify high-traffic areas and road connectivity (Jayaweera, Perera, and Munasinghe 2017;

Ando and Kurauchi 2021).

These tools are useful to analyze network robustness. On its own, eigenvector centrality can

identify nodes in a network that are vulnerable to the removal of other nodes (Ando et al. 2020).

Analysis of how stable centrality measures are when nodes are added or removed, a technique called

centrality interference or centrality robustness, can act as a measure of road network robustness

(Scardoni and Laudanna 2013).

Other tools to analyze road network robustness look at the topological properties of the network

after an attack, defined as the removal of edges or nodes in the network (Holme et al. 2002). The

clustering coefficient, serves as a measure of reliability of a network, and how much it changes after

an attack can demonstrate how the attack affects network connectivity (Xeumei and Xiaochen

2010). The change in the average shortest path also serves to demonstrate how robust people’s

ability to travel along the network is to an attack (Xeumei and Xiaochen 2010; Kaub et al. 2024).

This paper will implement these methods on the Baltimore road network, utilizing MCA com-

bined with centrality interference methods along with analyzing how the average shortest path

changes before versus after the bridge was destroyed. Most studies that implement these methods

do so at a theoretical level and attempt to identify the edges and nodes where the network is

most vulnerable to an attack (Xeumei and Xiaochen 2010; Ando and Kurauchi 2021; Masuccia and

Molinero 2016; Julliard, Yun, and Rado 2015; Holme et al. 2002). The handful of studies that im-

3



plement these methods that are inspired by real events tend to analyze the effects of disasters that

span the entire network, like an earthquake (Kaub et al. 2024; Sakakibara, Kajitani, and Okada

2004). Therefore, this paper’s application of these methods to the real-world removal of a single,

important edge of a city’s road network is, to my knowledge, new.

3 Model

3.1 Network Structure

The first way we’ll analyze the robustness of the network is through comparing the structure of the

network before versus after the destruction of the bridge.

At a global scale, that means we’ll be comparing the average path between nodes. To calculate

this, we’ll use

d =
1

n(n− 1)

∑
i∈N

∑
j∈N,j ̸=i

di,j

where N is the set of all nodes in the network, n = ∥N∥ is the number of nodes in the network,

and di,j is the distance between nodes i and j traveling along the network. This will tell us how far

an individual has to travel to get from one randomly chosen intersection to another. Any change

in this that we observe would suggest the bridge collapse has made it harder to travel across the

network. However, since the event only affected a small part of the road network, we don’t expect

any observed change in this to be particularly significant.

Because of this likely smaller global effect, we also want to study the local effects of the bridge

collapse within the network. To do this we’ll look at node level centrality measures and node-node

pair level travel lengths.

For centrality measures, we’ll look at the eigenvector centrality (CE
i ), betweenness centrality

(CB
i ), closeness centrality (CC

i ), and straightness centrality (CS
i ). The first three of these are

standard in complex network analysis and tell us whether a node is connected to important nodes

(CE
i ), between other nodes (CB

i ), and close to other nodes (CC
i ). For CE

i , we’ll follow Ando et

al. 2020, where roads were weighted based on capacity, and weight edges based on the type of road

they represent, with highways being the highest weighted road and residential streets being the
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lowest weighted. For CB
i and CC

i , we’ll weight edges by their lengths.

Straightness centrality is a measure specific to the study of spacial networks, networks where the

nodes and edges have a physical location and geographic interpretation, that tells us how directly

a node can get to other nodes along the network. Introduced in Porta, Crucitti, and Latora 2006b,

it’s calculated using

CS
i =

1

n− 1

∑
j∈N,j ̸=i

dEucl
i,j

di,j

where dEucl
i,j is the Euclidean distance between the points. Intuitively, a straightness centrality of

1 implies a node has a straight connection to all other nodes in the network, and anything lower

tells us how inefficient traveling along the network is relative to just taking the straightest route.

To use these centrality measures to analyze robustness, we’ll analyze how much they change

when the Key Bridge is removed from the network. This gives us a method of assessing how

individual nodes in the network were affected by the bridge collapse and where the most affected

nodes are located.

To get an even more specific look at the implications of the collapse, we’ll also look at how

travel lengths between individual nodes are affected. To do this we’ll compare di,j for all i, j ∈ N

to see which routes were the most affected and what areas of the city these routes go through. This

will help give us an idea of which trips the collapse will impact, and, therefore, the types of people

that will be the most affected by the collapse.

3.2 Network Utilization

Analysis of the overall structure of the Baltimore road system will give us a general idea of how the

network, nodes, and paths were affected by the bridge collapse, but it doesn’t take into account how

people actually use the road network. People aren’t evenly spread throughout a city and equally

likely start and end their journeys at all nodes.

To fix this, we’ll use commute data to weight trips based on how often the routes are actually

being traveled. Using this new measure, we’ll look at the average shortest path length and analogues

to betweenness, closeness, and straightness centrality. Because this new model changes the paths

taken instead of the structure of the network, there’s no useful analogue to eigenvector centrality,
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so that will be ignored for this portion of the analysis.

Our utilization-sensitive average shortest path length will be calculated as

d =
1∑

i∈N
∑

j∈N,j ̸=i ni,j

∑
i∈N

∑
j∈N,j ̸=i

ni,jdi,j

where ni,j is the number of people traveling from node i to j. The only addition here compared to

the standard average shortest path equation is the addition of the number of people traveling the

route into the sum along with a corresponding change to how we normalize the sum to account for

this.

Use-weighted betweenness centrality will be calculated as

CB
i =

1∑
j∈N,j ̸=i

∑
k∈N,k ̸=i,j nj,k

∑
j∈N,j ̸=i

∑
k∈N,k ̸=i,j

nj,k
pj,k(i)

pj,k

where pj,k is the number of shortest paths between j and k and pj,k(i) us the number of shortest

paths between j and k that cross i. Therefore, we’re measuring the number of traveled paths that

go through i, not just possible paths like with normal betweenness centrality.

Use-weighted closeness centrality will be

CC
i =

∑
j∈N,j ̸=i ni,j∑

j∈N,j ̸=i ni,jdi,j
.

The interpretation of this is a measure of how far individuals starting at i need to travel.

Finally, use-weighted straightness centrality will be

CS
i =

1∑
j∈N,j ̸=i ni,j

∑
j∈N,j ̸=i

ni,j

dEucl
i,j

di,j
.

This can be interpreted as how direct the paths of individuals starting at i are.

Together, this will give us tools to analyze the ways the collapse affected how people actually

use the road system in the Baltimore Metro Area, not just the structure of the network like we get

from the more standard estimates.
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4 Data

For our analysis, we’ll use a road network from Open Street Maps provided by the Python API

from Boeing 2017. This API allows us to get a directed network of roads and intersections for

almost anywhere in the world, along with basic statistics about each section of road, like the exact

coordinates, length, road type, and number of lanes.

In our study, we’ll focus on the 7 counties that make up the BMA: Anne Arundel, Baltimore

City, Baltimore County, Carroll, Harford, Howard, and Queen Anne’s County. To make our analysis

both feasible and meaningful, especially when looking at eigenvector centrality and average shortest

path, we exclude any intersections that aren’t part of the largest strongly connected component.

This results in us excluding 272 intersections in the network, mostly near the county boundaries.

The resulting network has 91,300 intersections (nodes) and 218,842 road segments (edges), 4

of which are on the Key Bridge and were affected by the collapse. A visualization of this network

is shown in Figure 4.1. We can see the road network varies substantially in node density with the

densest patches near the city and to the South closer to Washington DC. The zoomed in view of

the Key Bridge shows the bridge plays an unique role in the network, being the furthest east road

that crosses the port. When the bridge is removed, paths that normally go across it will need to be

diverted west towards downtown. Therefore, we can expect a significant number of shortest paths

to be rerouted and affected.

For data on network utilization, we’ll use census tract level journey-to-work flows from the US

CENSUS (Bolton 2020). This data gives bilateral flow estimates for the number of daily commuters

from each census tract to every other census tract from 2012 to 2016. This isn’t the time period

we’re interested in, but is the most recent data available. Due to the bounds of the road network

we’re working with, we only include commuters who both live and work within the BMA. This

excludes 11.1% of commuters who work in the BMA and 12.2% of commuters who live in the

BMA.

The dataset includes 678 tracts within the BMA. 672 of these are home to at least one commuter

and all 678 are the workplace of at least one commuter. Together, there are 41,272 residence-

workplace pairs which 1.02 million commuters travel between. The maps in Figure 4.2 shows the
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Figure 4.1: Baltimore Metro Area Road Network

(a) Total BMA Network (b) Zoomed In to Key Bridge

Note: Key Bridge highlighted in red.

commuter volume into and from census tracts in the BMA. We can see that commuter residences

are somewhat evenly distributed throughout the area, but workplaces are much more centralized.

When we calculate paths commuters are taking along the network, this will mean that the paths

will point to a much more central location, which may limit how many go across the Key Bridge.

The density plot in Figure 4.2 shows that commuter flow has a significant right-skew which even

appears on a log-scale plot. This means that commuter flows are, typically, fairly low, but there

are tract pairs with much higher flow.

We are limited by the granularity of this data. Census tracts are very large compared to the

intersection/road segment scale of the network, which means we can’t perfectly estimate the paths

commuters are taking.2 In our analysis, we’ll estimate paths with commuters starting and ending

at the intersection closest to the center-of-mass of the census tracts they’re traveling between and

assuming all commuters travel along the road network. This should give us a reasonably accurate

estimate for how commuters are traveling, although will have some errors, especially closer to the

center of mass for the higher-volume census tracts.

2. From a data protection and privacy standpoint, especially in a public dataset, this limitation is very reasonable.
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Figure 4.2: Baltimore Metro Area Census Tracts by Commuter Volume and Flow
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5 Results

5.1 Network Structure

The average shortest path length along the network is 26.3 miles (42.3 km) with the bridge and 26.4

miles (42.5 km) without the bridge. That means the destruction of the bridge increased the average
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shortest path length by 0.09 miles (0.14 km). This difference of only 0.003% of the pre-collapse

average shortest path is relatively small, and suggests the network-wide implications of the event

were minimal.

At a node level, Figure 5.1 shows the calculated centralities for intersections in the BMA with

the bridge, without the bridge, and the difference between the two.

Both with and without the bridge, the eigenvector centralities are the highest just south of

downtown Baltimore. This area has a handful of larger neighborhoods and workplaces (Figure 4.2)

and the BWI airport, consistent with the idea that eigenvector centrality is correlated with areas

of high use from Jayaweera, Perera, and Munasinghe 2017.

Without the bridge, the centrality effects are spread throughout the network. The nodes near

the bridge are the most affected, but a connected web of nodes that stretches in all directions across

the whole network also decreases in centrality. Aside from these specifically affected nodes, nodes

generally face a slight increase in centrality, suggesting the importance of the affected nodes was

spread throughout the network, though there are a handful of nodes in Queen Anne’s county to

the east and downtown that face a disproportionate increase in centrality.

The betweenness centrality is highest for nodes at the center of the network and at the ends of

bridges, especially the one connecting Queen Anne’s county to the east with the rest of the BMA.

From these, there are clear paths of high centrality that extend through the rest of the city. Based

on Porta, Crucitti, and Latora 2006b, these are likely important paths that are frequently used to

traverse the network.

Before it collapsed, the nodes along the Key Bridge were all very important, and paths of

other important nodes extended from it, especially along the shore. After the collapse, these nodes

became much less important, shown in the path of purple nodes on the difference graph that crosses

the bridge and stretches up and down the coast. Instead, paths of increased centrality extend from

the Fort McHenry Tunnel (I-95) and the Harbor Tunnel (I-895), which cross the port slightly farther

inland than the Key Bridge, and from downtown, which sits at the end of the port.

The closeness centrality both with and without the bridge is centered around the downtown

area, likely because it sits at the center of the network. From here, it gradually decreases, and
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Figure 5.1: Node centrality before and after the bridge collapse.

Network With Bridge Network Without Bridge Difference

CE
i

CB
i

CC
i

CS
i

Difference calculated a CWithout Bridge
i − CWith Bridge

i . Log-scale used for Eigenvector and Betweenness centrality
and a symmetric log-scale used for their difference. This meant any nodes with 0 weren’t plotted, which was

between 9,000 and 35,000 nodes depending on the measure.
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is lowest in corners of the city, especially in Queen Anne’s county to the east. This highlights

the problems with using closeness centrality on a subset of a network, since the inclusion of other

counties surrounding the BMA would likely change where this center of mass sits. Still, the change

in the closeness centrality will still be a meaningful indicator of the network implications of the

bridge collapse, since nodes are all located in the same place relative to the boundary of our network

before and after the event, meaning the bias from this boundary effect should be equivalent on both

networks.

The effects of the bridge collapse are almost entirely concentrated near the end of the bridge

toward the bay. This makes sense, since, like we saw with the minimal change in average shortest

path, nodes aren’t that much farther from each other in general, which suggests there should be a

minimal change in the closeness centrality for most nodes. The nodes that were affected, however,

now have to take a much longer route around the port to get to nodes on the other side, when

before they would have just taken the bridge. The nodes to the north were especially affected,

likely because routes from them to the south across the port now need to start going north in the

wrong direction to get around the port.

The straightness centrality is fairly uniform across both graphs, except in areas where water

makes it hard to get to a large portion of the network. This is especially apparent for Queen Anne’s

county, where the lowest straightness nodes are. Within the rest of the network, there are paths

with slightly higher straightness extending out from the center, suggesting these might be either

important routes for traversing the network or important areas within the network (Porta, Crucitti,

and Latora 2006b; Wang, Antipova, and Porta 2011).

Like closeness centrality, the effects of the event on straightness centrality are almost entirely

concentrated in nodes near the event, especially to the north. The rationale behind this effect is

the same: paths that previously would have taken the bridge now have to take a much less direct

route around the port, making their path less straight.

Importantly, the bridge collapse didn’t benefit the closeness or straightness for any intersections

in the network. This makes sense — the shortest path can’t ever be made shorter by removing an

edge from the network — but does contrast the other two centralities where there are winning and
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Table 5.1: Summary statistics for the difference in affected paths (miles).

Count Mean St. Dev. Min 25% Median 75% Max
4.750× 108 1.525 1.514 1.864× 10−6 0.559 1.049 2.018 15.716

losing nodes.

Altogether, our MCA analysis suggests that the effects of the bridge collapse on the ability to

travel from a node across the network are concentrated closer to the event, but more dispersed effects

are seen in the specific paths taken, affecting traffic through would-be-unaffected intersections.

To analyze the affected paths, we’ll focus on the 475 million paths that were impacted, roughly

0.57% of the possible paths in the total network. This is done both for tractability reasons, there

are more than 80 billion node-to-node paths in the network as a whole which would pose significant

problems for computability, and analysis reasons, since the effect of these 99.43% of paths that

are unaffected is seen in the minuscule change in the average shortest path length. Summary

statistics for this distribution are shown in Table 5.1. The mean and standard deviation are

similar, evidencing the wide spread of the distribution. The mean is larger than the median, which

suggests there is a right skew. The distribution and geographic start points of these shortest paths

are shown in Figure 5.2.

The maps show that nodes all along the coast had significant numbers of paths that would have

gone over the bridge and were affected, but these only significantly affect travel distances closer to

the bridge and the port, since by cutting in at a slight angle someone traveling from farther north

or south can get around the port without using the bridge and adding little distance to their route,

while someone traveling from closer has to cut straight west first.

Like we saw from the summary statistics, the distribution of path distances has a strong right

skew and a lot of noise. This means that most affected paths weren’t lengthened significantly, but

a handful of paths were, which means the impacts of the bridge collapse are localized to people

traveling a handful of routes and not necessarily felt by everyone in the BMA area.
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Figure 5.2: Changes in shortest paths
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5.2 Network Utilization

Based on our utilization weighted model, the average commute to work is 11.43 mi (18.39 km) before

the bridge collapsed and 11.44 mi (18.40 km) after. This is less than half of the average shortest

path along the network, and points to the idea that people are choosing to live and work closer
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together than would be expected if both choices were independent, meaning that our structural

analysis might overweight long trips. The bridge collapse caused the average commute distance to

increase by 0.010 miles or 0.016 km, more than we predicted without weighting by use, but still a

fairly insignificant amount.

For our centrality measures, two of them, closeness and straightness, require flow originating at

the node, meaning we can only find them at a tract level, while the other one, betweenness, is still

meaningful at a node-level. These statistics are shown in Figure 5.3.

As expected by excluding most nodes as possible origin points, there are quite a few more

nodes with 0 betweennesses, making the network more sparse. Still, we see similar patterns as the

standard betweenness centrality since high-betweenness paths extend from high-betweenness nodes

in the center and near bridges, likely representing important routes in the overall road network.

The effects of the bridge collapse are much more pronounced on the nodes they affect, but

affect fewer nodes. In Figure 5.1, there are faint routes of different centrality that span the whole

network, but here only specific routes, namely along the coast are affected, but this difference is

much more stark.

Closeness centrality is, again, concentrated around the center, though it tapers off much more

quickly. This could be caused by people who live downtown valuing living and working closer

together more than those that live in other parts of the city or the suburbs, causing them to be

closer to where they work.

The effects of the bridge collapse are even more localized when accounting for use than without.

In Figure 5.1, the effects of the collapse can be seen in a wide range of nodes near the bridge, but

when accounting for use only a small area to the north of the bridge is affected. The couple tracts

that are affected, however, see an impact that’s similar in magnitude to before. This suggests only a

couple tracts near the bridge have a significant amount of people cross the bridge in their commute.

The use-weighted straightness centrality exhibits far more variability than before. In Figure

5.1, there is limited difference between nodes within geographic areas, but the variability between

geographic areas is far more significant. Here, much of the variability between geographic areas

goes away, possibly because people are working near where they live, but straightness within nearby
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Figure 5.3: Node centrality before and after the bridge collapse.

Network With Bridge Network Without Bridge Difference
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i . Log-scale used for Betweenness centrality and a symmetric
log-scale used for its difference. This meant approximately 57,000 nodes with 0 centrality weren’t plotted.

tracts in geographic areas varies significantly more.

Like with closeness, the effects of the collapse are very localized to the area just north of the

port near the bridge relative to the network-wide estimations in Figure 5.1. Again, this suggests

that only a handful of tracts are home to significant numbers of commuters that used the bridge.

Altogether, our use based analysis suggests that the effects of the collapse are still significant, but

very localized to commuters that live in certain areas and that the traffic going through intersections
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is only affected in a handful of routes, not in a web that spans the network like we found without

using use-weighted statistics.

6 Conclusion

Through our network analysis of the Key Bridge collapse, we found significant local impacts but

limited global impacts from the event. On average, paths across the network only increase slightly

in length. However, in specific areas, especially near the bridge, we see significant impacts. This is

evident in the change in closeness and straightness centrality, especially when weighted by use where

the impacts become even more localized than would be suggested in an analysis of the network as a

whole. The betweenness and eigenvector centralities suggest that the implications of the blockage

will propagate and affect traffic and importance for intersections in a web throughout the network,

especially along the coast. The origins of affected path lengths also suggest a very localized effect,

and the right-skew of the distribution suggests that only specific paths are the most impacted.

The results of our analysis, especially in regard to betweenness centrality, are very consistent

with behavior patterns we’re observing after the collapse. The Fort McHenry Tunnel and Harbor

Tunnel, which we predicted would increase in betweenness due to the event, have experienced a

significant increase in traffic after the event (Domen 2024). This consistency with the real world

suggests the use of this type of network analysis to examine the road network is valuable and paints

an accurate picture of the implications of the event.

6.1 Limitations

Our analysis has a handful of limitations. Mostly because of the small size of the shock to the

network (one edge), we don’t examine the change in the size of the largest connected component,

the clustering coefficients, or modularity classes and community divisions, factors which are often

used in the literature to analyze road network shocks (Xeumei and Xiaochen 2010). These weren’t

affected by the removal of a single bridge, so analysis of them that’s more in line with other network

attack literature would be uninformative.

The network itself also has an arbitrary boundary. We chose the network to include all counties
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in the BMA area, but the BMA road network isn’t completely disconnected from that of the rest

of Maryland and United States. In that way, our analysis might not be able to analyze how far

the collapse effects propagate. Intersections with affected betweenness centrality extended all the

way to the north and south of the network and don’t taper off within our bounds, but this pattern

could change if the network size was larger. Due to the boundary, our use analysis also ignores the

significant number of paths that travel between the BMA area and the surrounding counties.

Our analysis of the tract-to-tract commuter flow data also has a handful of limitations. It relies

on a couple key assumptions, namely that everyone travels by car using the road network and starts

and ends in the center of their tract, that reflect simplified versions of reality. We also ignore trips

that don’t go from the home tract to the workplace tract. These ignored trips include commutes

home after work, which could be modeled by flipping the start and endpoints in the analysis, and

other trips people make by car, like when running errands or exploring the city. Therefore, our

analysis should be interpreted in the context of trips people make to work and not general road

use.

6.2 Future Work

Future work could work on incorporating other use-related data sources, for example average annual

daily traffic or work-to-home tract trips, with our network. This would help get a better view of

how people’s use of the network was affected by the collapse, but, at least for AADT data, isn’t

feasible until the end of 2024 when these numbers will be released for the time of the collapse. A

more empirical analysis that compares network statistics to actual effects would help inform and

contextualize future research on the topic, since it would allow researchers to better understand

what the differences in network statistics and centrality measures actually mean in a real world

context.

Future work could also look more at what types of nodes were impacted. Knowing whether

these were highways, arterial roads, or side streets would be valuable and help inform how we

interpret the effects of the shock.
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