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Background



The Event

On March 26, 2024, the Dali struck and collapsed the Francis Scott Key Bridge
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Key Bridge

The Francis Scott Key Bridge is
part of I-695, or Baltimore
Beltway
It’s an important part of the
Balitmore Road System
• 30,000 cars travel across it
every day

• Spans the entire port of
Baltimore (1.6 Miles)

Screenshot from Google Maps
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Questions

How did the bridge collapse affect the road network as whole?

Where are these effects concentrated?
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Empirical Strategy



The Network (1/3)

Create a network using intersections as nodes and road
segments as edges

The “Primal Approach” (Porta, Crucitti, and Latora 2006)

Compare this network with and without the bridge edges
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The Network (2/3)

We get our network from OSMnx, a Python library that uses
Open Street Maps to create a directed multigraph for any road
system in the world (Boeing 2017)

7 counties in the BMA: Anne Arundel, Baltimore City, Baltimore
County, Carroll, Harford, Howard, and Queen Anne’s County

Filter out 272 nodes that aren’t a part of the largest strongly
connected component

End up with a network with

• 91,300 nodes (intersections)
• 218,842 edges (road segments)
• 4 collapsed road segments
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The Network (3/3)

Total BMA Network Zoomed In to Key Bridge

Key Bridge highlighted in red.
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Method

Analyze global network effects using average shortest path
length (Xeumei and Xiaochen 2010; Kaub et al. 2024)

Analyze local effects using Multiple Centrality Analysis (MCA)
(Porta, Crucitti, and Latora 2006; Porta and Latora 2007; Barthelemy and Flammini 2009; Jayaweera, Perera, and

Munasinghe 2017)

• Eigenvector Centrality: High traffic “important” areas
• Betweenness Centrality: Important routes
• Closeness Centrality: Areas with high land use, can have
issues on a bounded network

• Straightness Centrality: Important routes and land use

Analyze the impacted paths for even more localized effects
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Straightness Centrality

Straightness Centrality is a measure specific to spatial networks
that measures how directly you can travel to other nodes
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Results



Average Shortest Path

The average shortest path was only marginally affected

Before Collapse After Collapse Difference % Difference

26.3 26.4 0.09 0.003
Length of the average shortest path in the BMA road network (Miles)
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MCA: Eigenvector Centrality

Eigenvector Centrality

before the collapse

Eigenvector Centrality after

the collapse

Change in Eigenvector

Centrality
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MCA: Betweenness Centrality

Betweenness Centrality

before the collapse

Betweenness Centrality

after the collapse

Change in Betweenness

Centrality
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MCA: Closeness Centrality

Closeness Centrality before

the collapse

Closeness Centrality after

the collapse

Change in Closeness

Centrality
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MCA: Straightness Centrality

Straightness Centrality

before the collapse

Straightness Centrality after

the collapse

Change in Straightness

Centrality
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Impacted Shortest Paths (1/3)

475 million paths were impacted (0.57% of total paths)

Count Mean St. Dev. Min 25% Median 75% Max

4.750 × 108 1.525 1.514 1.864 × 10−6 0.559 1.049 2.018 15.716
Unit: Miles

14



Impacted Shortest Paths (2/3)
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Impacted Shortest Paths (3/3)

Number of Impacted Paths Starting at

Node

Total Distance Added in Paths Starting at

Node
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Conclusion



Conclusions

The effects of the bridge collapse were insignificant at a global
level, but are significant for individual nodes

• Nodes near the bridge: harder to travel through the
network (straightness, closeness, paths from node)

• Webs of nodes through the whole network: different levels
of traffic importance (eigenvector, betweenness)
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Limitations

There are many limitations, including

• The network boundary and size is arbitrary
• The metrics analyzed are limited and don’t include
clustering coefficient, largest connected component size,
or community devisions, which are standard in attack
literature (Xeumei and Xiaochen 2010)
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Further Work

Future work could

• Analyze the types of nodes affected
• Look at usage (use average annual daily traffic numbers)
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Questions?
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