Applications of the Simplex Method

Caleb, Gavin

Macalester College Saint Paul, MN

(Macalester)

Outline

- 1. Introduction
- 1.1 Review
- 1.2 History
- 1.3 General Problem
- 2. Geometric Approach
- 3. Simplex Tableau
- 4. Implementation
- 4.1 Infeasible $\vec{0}$ Solutions
- 4.2 Alternative Operators
- 4.3 Cycling
- 4.4 Our Implementation
- 5. Applications
- 5.1 The Scheduling Problem
- 5.2 Traveling Salesman
- 6. Conclusion

(Macalester)

Quick Review

- Optimization technique
- Constraints in the form of inequalities
- Feasible Region
 - Intersection of 'half spaces'
 - Convex polytope
- Solution techniques
 - Graphically
 - Simplex Method

Introduction

History

Figure: George Dantzig

Notoriously difficult to solve

- Joseph Fourier (1827): "Fourier-Motzkin" method
- Leonid Kantorovich (1939)
 - General formulation for linear programming problems
 - Expenditures and returns during WWII
- George Dantzig (1947): "Simplex Method"
 - Assigned 70 workers to 70 jobs

5/33

0000

The General Linear Programming Problem

Objective Function:

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Constraints of the form:

$$a_1x_1 + a_2x_2 + a_nx_n \begin{cases} \leq \\ = \\ \geq \end{cases} b$$
$$x_i > 0 \quad i \in \{1, ..., n\}$$

Definition

Feasible Solution: Any combination of variables such that all of the constraints are satisfied.

4 D F 4 P F F F F F F

Full Standard Form

Maximize:

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{11}x_{11} + a_{12}x_{12} + ... a_{1n}x_{1n} \le b_1$$

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_n$$

 $x_i \ge 0$ for $i \in 1, 2, ..., n$
 $b_i > 0$ for $j \in 1, 2, ..., m$

Definition

Feasible Region: The set of all n-tuples that are feasible solutions

Simplex Applications 12/12/2023 6/33

2-D Optimization

Maximize:

$$z = 3x_1 + 4x_2$$

Subject to:

$$x_1 + 2x_2 \le 8$$

$$2x_1 + x_2 \le 6$$

$$x_{1,2} \ge 0$$

7/33

IACALESTER) Simplex Applications 12/12/2023

9/33

Simplex Tableau vs Algebraic Method

Step 1:

Step 1: $x_1 = x_2 = 0$

$$s_1 = 8 - x_1 - 2x_2$$

 $s_2 = 6 - 2x_1 - x_2$
 $z = 0$

Step 2:

basis
$$z$$
 x_1 x_2 s_1 s_2 b x_2 0 $\frac{1}{2}$ 1 $\frac{1}{2}$ 0 4 s_2 0 $\frac{3}{2}$ 0 $-\frac{1}{2}$ 1 2 1 -1 0 2 0 16

Step 2: Switch x_2 and s_1

$$x_2 = 4 - \frac{1}{2}x_1 - \frac{1}{2}s_1$$

$$s_2 = 2 - \frac{3}{2}x_1 + \frac{1}{2}s_1$$

$$z = 4(x_2) + 3(x_1) = 16 + x_1 - 2s_1$$

.) | 0(1) | -0 | 11 | -01

ACALESTER) Simplex Applications 12/12/2023

Solution

With one more iteration...

basis
$$z$$
 x_1 x_2 s_1 s_2 b x_2 0 0 1 $\frac{2}{3}$ $-\frac{1}{3}$ $\frac{10}{3}$ x_1 0 1 0 $-\frac{1}{3}$ $\frac{2}{3}$ $\frac{4}{3}$ 1 $17\frac{1}{3}$

$$x_1 = \frac{4}{3}$$

$$x_2 = \frac{10}{3}$$

Duality

What is the 'Dual' of L.P. in general form?

$$\begin{array}{cccc} & \text{Primal} & \text{Dual} \\ \text{variables} & x_1...x_n & y_1...y_m \\ \text{matrix} & A & A^T \\ \text{RHS} & b & c \\ \text{objective} & \max c^T x & \min b^T y \end{array}$$

The relationship between constraints is easier to picture in an example...

IACALESTER) Simplex Applications 12/12/2023 11/33

Example

Primal

Maximize:

$$z = 3x_1 + 4x_2$$

Subject to:

$$x_1 + 2x_2 \le 8$$

$$5x_1 + 3x_2 \le 6$$

$$4x_1 + 6x_2 \le 3$$

$$x_{1,2} \ge 0$$

Dua1

Minimize:

$$z* = 8y_1 + 6y_2 + 3y_3$$

Subject to:

$$y_1 + 5y_2 + 4y_3 \ge 3$$

$$2y_1 + 3x_2 + 6y_3 \ge 4$$

$$y_{1,2} \ge 0$$

4□ > 4□ > 4 = > 4 = > = 90

Why?

- Sensitivity analysis
- 2 Establishes lower bound for Primal problem

^{*}does not depict the previous slide

Problems

When we went to implement our own version of the simplex method, we ran into four problems we had to solve

- $\mathbf{0}$ Infeasible $\vec{0}$ Solution
- 2 Alternate Relational Operators $(=, \ge)$
- 3 Cycling

14/33

ACALESTER) Simplex Applications 12/12/2023

Infeasible $\vec{0}$ Solution

Guessing $\vec{0}$ as the basic feasible solution doesn't always work Instead, we use the Two-Phase Simplex Method to find a basic feasible solution, then optimize the objective

Two-Phase Simplex Method

- Add "Additional Variables" a; to infeasible constraints
- 2 Ignoring the objective, minimize

$$\sum a_i$$

- If $\sum_i a_i \neq 0$, the LP is infeasible
- Otherwise, you've found a basic feasible solution
- Remove the additional variables and solve the LP

Simplex Applications 12/12/2023 15/33 Infeasible 0 Solution

Example

maximize
$$3x_1 + 4x_2$$
 maximize $3x_1 + 4x_2$ subject to $x_1 + 2x_2 \le 8$ subject to $x_1 + 2x_2 + s_1 \le 8$ $2x_1 + x_2 \le 6$ $2x_1 + x_2 + s_2 \le 6$ $x_1 + x_2 \ge 2$ $x_1 + x_2 \ge 0$ $x_1 + x_2 \ge 0$

16/33

ACALESTER) Simplex Applications 12/12/2023

Example Cont.

Step 1: Make a Tableau

Step 2: Minimize

$$\sum a_i$$

Step 3: Run Simplex Iterations

```
basis
                                                         a_1
                                                         0
                                                                8
  S<sub>1</sub>
                                                                6
  a_1
                                                                0
basis
                               s_1
                                      s2
                                                     a_1
                                      0
                                              0
                                                             8
                                                      0
  S<sub>1</sub>
                                                             6
  52
  a_1
                                0
                                              0
                                                            0
                 0
basis
                 X1
                                                         a_1
                                                         0
  S<sub>1</sub>
  52
                                                                 6
  a_1
   z
```

ACALESTER) Simplex Applications 12/12/2023 17/33

6

0

Example Cont.

Step 3 Cont.

Step 4: Remove additional variables and plug in objective

Step 5: Run Normal Simplex Iterations

Optimal Solution: $x_1 = \frac{4}{3}$, $x_2 = \frac{10}{3}$

Alternative Operator

Alternate Operators

How can we deal with different relational operators?

- (\leq) If $\sum_i a_{ij} x_i \leq b_j$, it becomes $\sum_i a_{ij} x_i + s_j = b_j$
- (=) If $\sum_i a_{ij}x_i = b_j$, it becomes $\sum_i a_{ij}x_i + a_j = b_j$
- (\geq) If $\sum_i a_{ij}x_i \geq b_j$, it becomes $\sum_i a_{ij}x_i s_j + a_j = b_j$

19/33

ACALESTER) Simplex Applications 12/12/2023

Cycling

Cycling

 Cycling is when you get to a previous tableau after performing simplex operations

Ex: If you pick the most negative value in the objective

Iterations

4□ > 4圖 > 4 臺 > 4 臺 > ■ 9 Q @

20 / 33

ACALESTER) Simplex Applications 12/12/2023

Cycling

Bland's Rule

To stop cycling, we use Bland's Rule Bland's Rule says we pick the first pivot of the possible choices in the objective

21/33

Geometric Approach Simplex Tableau Implementation Applications Conclusion 00000 00000000 000000000 0

Our Implementation

Implementation

Using all of these, we made a Simplex Method implementation in Python/Numpy that uses Bland's Rule to stop cycling and can take any relation operation in its input

ACALESTER) Simplex Applications 12/12/2023 22 / 33

Scheduling Problem

- Three different types of employees
 - Managers (\$25 per hour, 1.0 labor)
 - Regular workers (\$18 per hour, 0.9 labor)
 - Trainees (\$15 per hour, 0.5 labor)
- $b = \{3, 4, 5, 5, 4, 3, 3, 2\}$ Labor demand at hours (7am, ... 3pm)
- Constraints
 - Must have at least the minimum number of people necessary to cover demand
 - At least one manager working at all times
 - At least one trainee per day
 - At least as many regular workers as trainees
 - Fach worker must work a 4 hour shift.
- Minimize the cost of employees!

roduction Geometric Approach Simplex Tableau Implementation Applications Conclusion
oo oo oooo ooooo oooooo o

The Scheduling Problem

```
[[1.
       0.9 0.5 0.
                        0.
                             0.
                                   0.
                                        0.
                                              0.
                                                   0.
                                                        0.
                                                              0.
                                                                   0.
                                                                         0.
                                                                              0.
 [1.
       0.9 0.5
                  1.
                        0.9 0.5
                                  0.
                                        0.
                                              0.
                                                   0.
                                                        0.
                                                              0.
                                                                   0.
                                                                         0.
                                                                              0.
 [1.
                        0.9 0.5 1.
                                        0.9
                                             0.5 0.
                                                        0.
                                                              0.
                                                                         0.
                                                                              0.
       0.9
            0.5 1.
                                                                   0.
 [1.
                                                                         0.
       0.9
             0.5
                  1.
                        0.9 0.5
                                  1.
                                        0.9
                                             0.5 1.
                                                        0.9
                                                              0.5
                                                                   0.
                                                                              0.
 [0.
       0.
             0.
                   1.
                        0.9
                             0.5 1.
                                        0.9
                                             0.5 1.
                                                        0.9
                                                              0.5 1.
                                                                         0.9 0.51
 [0.
                  0.
                             0.
                                        0.9
                                                        0.9
       0.
             0.
                        0.
                                   1.
                                             0.5
                                                              0.5 1.
                                                                         0.9 \ 0.5
 [0.
       0.
             0.
                  0.
                        0.
                             0.
                                   0.
                                        0.
                                              0.
                                                        0.9
                                                              0.5 1.
                                                                         0.9 0.51
 [0.
                        0.
                             0.
                                                                   1.
       0.
             0.
                   0.
                                   0.
                                        0.
                                              0.
                                                   0.
                                                        0.
                                                              0.
                                                                         0.9 \ 0.5
 [1.
       0.
             0.
                  0.
                        0.
                             0.
                                   0.
                                        0.
                                              0.
                                                   0.
                                                        0.
                                                              0.
                                                                   0.
                                                                         0.
                                                                              0. 1
 [1.
       0.
             0.
                   1.
                        0.
                             0.
                                   0.
                                        0.
                                              0.
                                                   0.
                                                        0.
                                                              0.
                                                                   0.
                                                                         0.
                                                                              0.
 [1.
       0.
             0.
                   1.
                        0.
                             0.
                                   1.
                                        0.
                                              0.
                                                   0.
                                                        0.
                                                              0.
                                                                   0.
                                                                         0.
                                                                              0.
 [1.
       0.
                   1.
                        0.
                             0.
                                   1.
                                        0.
                                              0.
                                                   1.
                                                        0.
                                                              0.
                                                                   0.
                                                                         0.
                                                                              0.
             0.
 [0.
       0.
             0.
                   1.
                        0.
                             0.
                                   1.
                                        0.
                                              0.
                                                   1.
                                                        0.
                                                              0.
                                                                   1.
                                                                         0.
                                                                              0.
 [0.
       0.
             0.
                  0.
                        0.
                             0.
                                   1.
                                        0.
                                              0.
                                                   1.
                                                        0.
                                                              0.
                                                                   1.
                                                                         0.
                                                                              0.
 [0.
       0.
             0.
                  0.
                        0.
                             0.
                                   0.
                                        0.
                                              0.
                                                   1.
                                                        0.
                                                              0.
                                                                   1.
                                                                         0.
                                                                              0.
 [0.
       0.
             0.
                  0.
                        0.
                             0.
                                   0.
                                        0.
                                             0.
                                                   0.
                                                        0.
                                                              0.
                                                                   1.
                                                                         0.
                                                                              0.
                                                                                  11
 [0.
       0.
             1.
                  0.
                        0.
                             1.
                                   0.
                                        0.
                                              1.
                                                   0.
                                                        0.
                                                                   0.
                                                                         0.
```

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めのの

Solution

7am: 1 manager, 2 regular workers, 1 trainee

8am: 2 regular employees

9am: 2 regular employee

10am: nobody

11am: 1 manager, 2 regular employees

Cost: \$200 + \$576 + \$60 = \$836

Traveling Salesman

Traveling Salesman

Given a graph with edge costs, find the least expensive cycle that visits every vertex

Let

$$x_{ij} = \begin{cases} 1 \text{ if the edge from Node } i \text{ to Node } j \text{ is included} \\ 0 \text{ otherwise} \end{cases}$$

Then we want to

$$minimize \quad \sum_{i=0}^{n} \sum_{j=0, j \neq i}^{n} c_{ij} x_{ij}$$

subject to

$$\sum_{i=1}^{n} x_{ij} = 1$$

 $\forall j$ Outflow from each node is 1

$$\sum_{i=0, i\neq i}^{n} x_{ij} = 1$$

 $\forall i$ Inflow

Inflow to each ndoe is 1

$$x_{ij} \in \{0,1\} \quad \forall i,j$$

□ ト 4 個 ト 4 種 ト 4 種 ト ■ 9 へ ○

Geometric Approach Simplex Tableau Implementation Applications Conclusion

Traveling Salesman

Naive Formulation Cont.

This can get disconnected cycles, which doesn't solve the TSP

28 / 33

ACALESTER) Simplex Applications 12/12/2023

MTZ Formulation

To address this, we use the Miller–Tucker–Zemlin Formulation For every $i \geq 2$, add a u_i to the Decision Variables with the constraint that $u_j > u_i$ if $x_{ij} = 1$. In the program, this means

$$u_i - u_i + nx_{ij} \leq n - 1$$

ACALESTER) Simplex Applications 12/12/2023 29/33

Traveling Salesman

Therefore, the actual LP Formulation should be

minimize
$$\sum_{i=0}^{n} \sum_{j=0, j \neq i}^{n} c_{ij} x_{ij}$$

subject to

$$\sum_{i=0, i\neq j}^{n} x_{ij} = 1$$

$$\sum_{i=0,i\neq i}^{n} x_{ij} = 1 \qquad \forall i$$

$$u_i - u_j + nx_{ij} \le n - 1$$
 $\forall i, j \ge 2$
 $x_{ij} \in \{0, 1\}$ $\forall i, j$

orall j Outflow from each node is 1

Inflow to each ndoe is 1

MTZ Formulation

4□ > 4□ > 4 = > 4 = > = 90

Traveling Salesman

Example

For example, for a graph with cost matrix

The column is the origin and the row is the destination

Gets the cycle

$$A \rightarrow C \rightarrow B \rightarrow D \rightarrow A$$

(Macalester)

Geometric Approach Simplex Tableau Implementation Applications Conclusion

Traveling Salesman

```
8 69
                                           18
                                                  6 14 17
                                                                               0
                                                                                    0
                                                                 2 32
 Minimize:
                            [[0. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
                                   0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0.]
                                                                                            1.0
                                                                                            1.0
                                0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.
                                                                                            1.0
                             [1. 1. 1. 0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
                                                                                            1.0
                                                                                            1.0
                                0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0.
                             [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0.]]
Subject To:
```

Gets:

[0. 1. 0. 0. 0. 1. 0. 1. 0. 1. 0. 0. 2. 0. 3.]

MACALESTER) Simplex Applications 12/12/2023 32/33

Summary

What we did:

- Build a robust simplex implementation
- Look at two applications
 - Scheduling Problem
 - TSP

What we're working on:

- More examples
- Write up

