
Introduction to Linear Programming
A Simplex Implementation

Caleb, Gavin

September 19, 2024

1 Introduction

In this study, we aim to create our own implementation of the simplex method and apply the

technique to a variety of linear programming problems. Such problems are often very complicated,

featuring any number of linear relationships between variables that correspond to real world con-

straints, making it time consuming and often burdensome to solve by hand. The simplex tableau

method provides a more efficient route to finding an optimal solution and provides an effective

framework for addressing resource allocation, transportation, scheduling, and network flow prob-

lems. We begin the study with a brief observance of linear programming history before talking

about the general problem of optimization. We then outline our specific implementation of the

simplex tableau method and apply it to several relevant problems.

2 Linear Programming

In general, linear programming refers to a mathematical optimization technique used to find the best

possible outcome given a set of linear constraints. These constraints are defined using equalities

or inequalities and describe restrictions on the variables in objective function we are trying to

optimize. It’s feasible region, the intersection of the finitely many half planes defined by the

constraints, is called a convex polytope. The objective function is real-valued and defined on this

polyhedron. Alas, the solutions themselves are geometric, hinting at a possible approach utilizing

this area of mathematics. In two-dimensions, this is in fact the common approach. We sweep the

1

objective function across a polygon describing the feasible region until we reach the last intersection.

Once we begin thinking in higher dimensions, this notion of a polytope is much more difficult to

conceptualize. For these reasons we turn to the simplex method, which changes all of the inequalities

to equalities through the introduction of slack variables (more on that later), and refines current

solutions until we reach an optimum. An optimal solution implies maximum efficiency, highlighting

a logical application in management situations where the goal is to maximize profit or minimize

cost. We aim to apply this to technique to a wider range of problems that may fall outside of this

original use.

2.1 History

As mentioned previously, linear programming problems are notoriously difficult to solve, which

could be the reason for a limited history on the subject. The first person to really focus on the

topic, Joseph Fourier, published a paper in 1827 with a way to solve these problems. Known as

‘Fourier-Motzkin’ method, the technique was a step in the right direction, but had a computational

time that was exponential in the number of variables. A search for a better practice continued.

It wasn’t until 1939 that a Soviet mathematician, Leonid Kantorovich, developed a formulation

for linear programs equivalent to today’s general problem. The technique was meant to plan

expenditures and returns in order to reduce costs in WWII, but ended up being neglected by

the USSR. Around the same time, a Dutch-American economist Tjalling C. Koopmans modeled

classical economics problems as linear programs.

The largest contribution in the field was made by George Dantzig, who developed the Simplex

Method in 1947 to solve planning problems for the U.S. Airforce. This technique was the first to

efficiently find a solution in most situations. Dantizig’s original problem was to assign 70 people

to 70 jobs. If a computer were to test all of the possible assignment permutations, it would run

forever. However, when posed as a linear programming problem, the simplex method was able to

find the optimal solution in moments.

2.2 General Linear Programming Problem

We denote an objective function, the function we are trying to maximize or minimize while subjected

to linear constraints, as ‘z’. It’s a general linear combination of variables x1, x2, ..., xn such that

2

z = c1x1+ c2x2+ + cnxn. As mentioned earlier, the constraints can be either equality or inequality

constraints and take the form...

a1x1 + a2x2 + anxn


≤

=

≥

 b

where a and b are constants. Because all of the variables should be non-negative, we recognize the

additional constraints x1, x2, xn ≥ 0. Thus we define a feasible solution to by any combination of

these variables that satisfy the entire set of constraints. A feasible region is the set of all n-tuples

that are feasible solutions. Any given solution is a half space, and thus the feasible region is the

finite intersection of all half spaces described by the constraints, making the solution space (in the

problems we will consider) a convex polytope. The full form of the general problem would then be:

maximize c1x1 + c2x2 + ...+ cnxn = z

subject to a11x11 + a12x12 + ...a1nx1n ≤ b1

...

am1x1 + am2x2 + ...+ amnxn ≤ bn

x1 ≥ 0 i ∈ {1, 2, ..., n}

bj ≥ 0 j ∈ {1, 2, ...,m}

Where n is the number of variables and m is the number of constraints (excluding the non-zero

constraint for x and b). Notice that this ’standard’ form consists of all less-than inequalities and

is a maximization problem. Any equality can be converted into two simultaneous inequality

constraints, where a greater-than equation is really a less-than equation multiplied by -1. One

may wonder what happens if we want to minimize the objective function. Thankfully, this

difference is arbitrary because maximizing z is equivalent to minimizing -z. The constraints and

objective function are easier to work with in matrix form, thus:

3

maximize cTx

subject to Ax ≤ b

xi ≥ 0

c =


c1
...

cn



x =


x1
...

xn



A =



a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn



b =


b1
...

bm


It can be helpful to characterize the solutions for linear optimization problems. An infeasible

problem is one with no solution at all. A feasible region is bounded if there exists an M ∈ R such

that M ≥ xi for every possible feasible solution. This is almost always the case when dealing with

real world problems, otherwise the answer to every question would just be ’make more of it’.

2.3 Simplex Method

The simplex method was the first algorithm capable of solving large dimensional problems. It can

be shown that if an extreme point is not the optimum, than the solution exists on an edge such

that the objective function is strictly increasing as you move away from the original point. Of

4

course, this idea hinges on the assumption that the feasible region is a convex polytope, and there

are more nuanced parts of the program that handle unbounded solutions. In essence, the simplex

method starts with a feasible solution and traverses the edges of the region until it reaches a

maximum output.

Introducing the method is nearly impossible without and example problem, so we will consider

the linear program described below:

maximize 3x1 + 4x2

subject to x1 + 2x2 ≤ 8

2x1 + x2 ≤ 6

where the non-negative variables are taken as an implicit constraint. The algorithm starts with

the introduction of slack variables, a process that changes all of the inequalities to equalities.

These slack variables, denoted s1 and s2 must also be positive. Thus the system of linear

equations becomes:

x1 + 2x2 + s1 = 8

2x1 + x2 + s2 = 6

If we include the objective function, we can write the linear program in an augmented matrix

form known as the simplex tableau.

basis z x1 x2 s1 s2 b

s1 0 1 2 1 0 8

s2 0 2 1 0 1 6

1 −3 −4 0 0 0

The first column is simply to remind us what basis we are in, it has no computational

importance. Likewise, the top row is just for labelling purposes. From here on out when we refer

5

to say ’row 1’, we mean the numbers 0, 1, 2, 2, 0. We immediately notice that s1 and s2 are basic

variables, and a trivial solution can be obtained by setting the non-basic variables (x1 and x2)

equal to zero. This is the implicit starting point for most simplex tableaus of this form. Our goal

is to force s1 and s2 to become the non-basic variables. How do we do this? We identify a pivot

column and then select a single number to identify a pivot row. We transform this column into a

pivot with respect to the selected point through elementary row operations, which now makes the

corresponding variable a basic variable. We will walk through the finer details using this example

defined above.

As mentioned before, a trivial solution is obtained by setting x1 and x2 equal to zero, then z = 0.

Despite it being within the feasible region, it is clearly not the maximum. In order to traverse to

the next solution, select the column that has the smallest value in the ’z’ row. In this case, that

value is -4 and thus we want the x2 column to become a pivot. First we need to decide which

entry in this column to make the pivot point. To do so, we take the value in each row and divide

it into corresponding value in the ’b’ column, and select the smallest result. Because 8
2 = 4 is

smaller than 6
1 , the value 2 in row 1 will be our pivot value.

The first step is to divide R1 by 2, resulting in a value of 1 in our pivot point position. Next, we

want to eliminate all other values in the column. Thankfully this is a simple example and there

are only two other rows. Replace R2 with R2−R1new and replace R3 with R3 + 4R1new. Then

we arrive at the second iteration of the simplex tableau:

basis z x1 x2 s1 s2 b

x2 0 1
2 1 1

2 0 4

s2 0 3
2 0 −1

2 1 2

1 −1 0 2 0 16

We repeat the process but this time making x1 the pivot column. The resulting matrix is:

basis z x1 x2 s1 s2 b

x2 0 0 1 2
3 −1

3
10
3

x1 0 1 0 −1
3

2
3

4
3

1 0 0 5
3

2
3 171

3

6

Now both x1 and x2 are basic variables and we can read off the optimal solution from the tableau.

The ’b’ column states that the optimal solution is to take x1 =
4
3 and x2 =

10
3 , resulting in an

output of 171
3 .

3 Computer Implementation

Using the process from Section 2.3, we can broadly outline the simplex method as Algorithm 1.

Algorithm 1 Naive Simplex Method
Put the objectives in the tableau with slack variables

while The objective has negative values do

j ← the most negative objective column ▷ Pivot Column

i← the smallest (positive) ratio test ▷ Pivot Row

Divide row i by the value at i, j

Row reduce to eliminate column j from other rows

Replace the basic variable in row i with the variable from j

end while

This implementation, however, suffers from a number of key issues that make it unworkable.

Solving these problems will require us to use a handful of related algorithms in our

implementation.

3.1 Finding Feasible Regions

The first problem with the naive implementation is that the simple way to setup a tableau from

Section 2.3 doesn’t work in cases where the trivial zero solution is infeasible. To address this,

we’ll implement the Two Phase Method.

The Two-Phase Method, as you may have guessed, divides an LP into two phases. The first phase

finds a feasible region and the second one finds the optimal solution in the feasible region. To do

this, we begin by adding ’additional variables’, ai, to each of the infeasible constraints

representing the distance between the current solution and the feasible solution. Then, ignoring

the objective, we use the simplex method to minimize the sum of the additional variables. If this

sum can be minimized to 0, we have a basic feasible solution (BFS) and can proceed to Phase 2.

7

If it can’t, the problem is infeasible. Lastly, assuming we found a BFS, we plug the objective back

into the tableau and use normal simplex iterations to find the optimal solution [4].

For example, given the linear program

maximize 3x1 + 4x2

subject to x1 + 2x2 ≤ 8

2x1 + x2 ≤ 6

x1 + x2 ≥ 2

x1,2 ≥ 0

the trivial, x1 = x2 = 0 solution doesn’t meet the constraint that x1 + x2 ≥ 2. Therefore, when we

setup the simplex problem, we add the additional variable a1 to this constraint to get

minimize a1

subject to x1 + 2x2 + s1 = 8

2x1 + x2 + s2 = 6

x1 + x2 − s3 + a1 = 2

x1,2 ≥ 0.

Using a tableau, we have

basis z x1 x2 s1 s2 s3 a1 b

s1 0 1 2 1 0 0 0 8

s2 0 2 1 0 1 0 0 6

a1 0 1 1 0 0 −1 1 2

z 1 0 0 0 0 0 1 0

8

Using the Simplex Iteration rules from Section 2.3 we get:

basis z x1 x2 s1 s2 s3 a1 b

s1 0 1 2 1 0 0 0 8

s2 0 2 1 0 1 0 0 6

a1 0 1 1 0 0 −1 1 2

z 1 −1 −1 0 0 1 0 −2

Followed by
basis z x1 x2 s1 s2 s3 a1 b

s1 0 0 1 1 0 1 −1 6

s2 0 0 −1 0 1 2 −2 2

x1 0 1 1 0 0 −1 1 2

z 1 0 0 0 0 0 1 0

At this point, since there are no negative values in the z row of the tableau, we check the b

column of the row to see if either the value is zero, meaning we have a BFS, or the value is

anything nonzero, meaning the problem is infeasible.

In this case, we get zero, meaning we can remove the a1 columns and plug in the original

objective to get
basis z x1 x2 s1 s2 s3 b

s1 0 0 1 1 0 1 6

s2 0 0 −1 0 1 2 2

x1 0 1 1 0 0 −1 2

z 1 −3 −4 0 0 0 0

Now we can use normal simplex iterations to solve the problem, getting x1 =
4
3 and x2 =

10
3 .

Implementing the Two-Phase Method gives us the ability to deal with any type of constraint, not

just less than. For example, the problem above has a constraint where a linear combination of x1

and x2 is greater than some number. For any constraint type, we simply need to combine slack

and additional variables in different ways.

With a less-than condition, we add a positive slack variable, since the condition can have a

9

positive difference between the right-hand-side and left-hand-side of the constraint. Therefore,1

∑
i

aijxi ≤ bj becomes
∑
i

aijxi + sj = bj

With an equality condition, we can’t have any slack between the right-hand-side and

left-hand-side of the constraint. We do, however, need to find a feasible region, since the

right-hand-side doesn’t need to be 0. Therefore,

∑
i

aijxi = bj becomes
∑
i

aijxi + aj = bj

With a greater-than condition, we add a negative slack variable, since the difference between the

right-hand-side and left-hand-side should be negative, and also add an additional variable, since

we need to find a feasible region. Therefore,

∑
i

aijxi ≥ bj becomes
∑
i

aijxi − sj + aj = bj .

3.2 Dealing With Cycling

The process outlined earlier is also vulnerable to cycling. Cycling means the same tableau is

reached after performing simplex iterations, particularly when the right hand side of a constraint

is 0. For example, the tableau

basis z x1 x2 x3 x4 s1 s2 b

s1 0 1
4 −1

8 12 10 1 0 0

s2 0 1
10

1
20

1
20

1
5 0 1 0

z 1 −5 −4 20 2 0 0 0

cycles and gets back to itself after only 6 simplex iterations of picking the most negative objective

value as the next column.

To avoid cycling, we use Bland’s Rule. Bland’s Rule says that we should pick the leftmost

negative value as the pivot column, not the most negative. Using this process, we are guaranteed
1All of these assume bj is positive. If it’s not, multiply the condition by -1 and, if necessary, flip the inequality.

10

to avoid cycling [2], although there is a slight decrease in performance [1].

3.3 Unbounded Solutions

Finally, optimal solutions to some LPs include unbounded solutions. For example, the optimal

solution to

maximize x1 + x2

subject to x1 ≤ 10

x1 + x2 ≥ 5

is an infinitely large x2.

Therefore, we need to incorporate a way to detect this into our ratio test. Luckily this is quite

simple: if all values in the pivot column are negative, that column is unbounded [5]. The ratio

test with a check for unboundedness incorporated is described in Algorithm 2

Algorithm 2 Ratio Test
if The column has negative values then ▷ Check for unboundedness

return The LP is unbounded

end if

ratios ← Dividing column i by the b column

return The index of the smallest positive value in ratios

3.4 The Final Algorithm

Combining all of these, a high level pseudocode for our Simplex Implementation is described in

Algorithm 3

11

Algorithm 3 Simplex Method
if There are ≥ or = constraints then ▷ Phase 1

Add additional variables where needed

Put the constraints in a tableau with minimizing additional variables as the objective

while The objective has negative values do

j ← the first negative objective column ▷ Pivot Column

if the column has negative values then ▷ Check for unboundedness

return The LP is unbounded

end if

ratios ← Dividing column i by the b column

i← the index of the smallest positive value in ratios ▷ Pivot Row

Divide row i by the value at i, j

Row reduce to eliminate column j from other rows

Replace the basic variable in row i with the variable from j

end while

if The objective isn’t 0 then

return the LP is infeasible

end if

Remove the additional variable columns in the tableau

else

Put the constraints in a tableau and proceed to Phase 2

end if

while The objective has negative values do ▷ Phase 2

j ← the first negative objective column ▷ Pivot Column

if the column has negative values then ▷ Check for unboundedness

return The LP is unbounded

end if

ratios ← Dividing column i by the b column

i← the index of the smallest positive value in ratios ▷ Pivot Row

Divide row i by the value at i, j

Row reduce to eliminate column j from other rows

Replace the basic variable in row i with the variable from j

end while

12

A Python version of this algorithm that we wrote is available on GitHub.2

4 Applications

4.1 The Scheduling Problem

A cousin of the scheduling problem explored by George Dantzig in his initial optimization paper,

the following problem explores the effectiveness of linear programming in scheduling shift work.

We want to consider a small business, say a coffee shop for example, that has a few different

employees with different availability and levels of experience. A manager’s goal may be to

minimize the total hourly wage of the employees working while maintaining the correct number of

members on the floor. What does this look like in a program format?

We choose to have our decision variables, xi, represent the number of employees of type i that

should come to work at a given hour. The amount of employees working at any given time should

exceed the set minimum for each hour of the day. For example, suppose the coffee shop is open

from 7am to 3pm. Depending on the rush hour and various other factors, the minimum required

employees may change depending on the time of day. Also suppose that the coffee shop has three

types of employees: shift managers, regular employees, and trainees. Because of the different

levels of experience, an hour of work from each employee type has a different labor value, 1 for the

shift managers, 0.8 for the regular employees and 0.5 for the trainees. Let’s explicitly create an

equation for the hour 9 am, a very busy time for the coffee shop. At 9 am, there should be at

least 5 units of labor working.

xm + 0.8xr + 0.5xt ≥ 5

Where xm is the number of shift managers, xr is the number of regular workers and xt is the

number of trainees. As you can imagine, there is a new equation for each hour of the day. If we

add the additional constraint that each employee must work for 4 hours in a given shift, the

resulting decision variables represent the number of employees that start at a given hour.

Naturally, each employee type would likely earn a different wage, an idea reflected in the objective

function where the goal is to minimize the total cost of paying employees for that day. Assuming
2Code available at https://github.com/GavinEngelstad/Comp-Geom-Simplex-Implementation

13

https://github.com/GavinEngelstad/Comp-Geom-Simplex-Implementation
https://github.com/GavinEngelstad/Comp-Geom-Simplex-Implementation

that shift workers make cm = $25 per hour, regular workers make cr = $18 per hour and trainees

make ct = $15 per hour. The objective function becomes:

z = cm, 7amxm, 7am + cr, 7amxr, 7am + ct, 7amxt, 7am + ...cm, 3pmxm, 3pm

Where xm, 7am is the number of shift managers, xm, that will be starting at 7am. The demand for

labor at each hour of the day is b = {3, 3, 5, 5, 4, 4, 3, 2}. We would like to add a few constraints

other than labor requirements, the first of which is that there must be a manager working at all

times. Managers have the highest wage, and if experience is not accounted for, the program

would likely land on an optimal solution with no managers at all. A second preference would be

to have at least one trainee work each day, despite their limited productivity and proportionally

high wage. The final constraint states that there can be no more trainees than regular employees

working at any given time. After all, we need someone to teach the trainees what to do. Our

algorithm makes quick work of finding the optimal schedule. Below we report the results, where

the program decided how many of each employee should come in at each hour of the work day.

7am: 1 manager, 2 regular employees, 1 trainee

8am: no new employees

9am: 3 regular employees

10am: no new employees

11am: 1 manager, 2 regular employees

Keep in mind that because every shift is at least four hours, no additional employees can come in

at 12pm, 1pm, or 2pm. Our simplex method implementation is not an integer program, so

decimals were rounded up. The cost of paying all of the workers for this hypothetical day would

then be $764.

4.2 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) asks us to find the least expensive cycle that visits every

node in a graph once with costs to traversing each edge. An example of this problem is shown in

Figure 1.

14

A B

F C

E D

2

2

1

1

4

6

4

3

3

2

Figure 1: Traveling Salesman Problem example. Solution shown in red.

To set this up as a linear program, for each possible pair of nodes i and j, we create a variable

xij ∈ {0, 1}. If the optimal Traveling Salesman path includes the edge from i to j, then xij = 1.

Otherwise, xij = 0.

Since we want to minimize the costs of traversing the graph, the objective for a graph with n

nodes will be

minimize
n∑

i=0

n∑
j=0,j ̸=i

cijxij
3

where cij is the cost of traversing the edge from node i to node j.

The constraints need to be setup to ensure that a cycle is found that goes through each node.

Therefore, the first two constraints are setup to ensure inflow and outflow into each node is equal

to 1. Therefore, we can setup the LP as

minimize
n∑

i=0

n∑
j=0,j ̸=i

cijxij

subject to
n∑

i=0,i ̸=j

xij = 1 ∀j Outflow from each node is 1

n∑
j=0,j ̸=i

xij = 1 ∀i Inflow to each node is 1

xij ∈ {0, 1} ∀i, j, i ̸= j.

This formulation, however, can lead to two separate cycles. Figure 2 obeys both of these
3So far, this paper has only looked at maximization problems. Mininization problems can be solved through the

same process, you just take the negative of the objective first.

15

A B

D C

Figure 2: Degenerate cycle that still obeys the basic Traveling Salesman formulation

constraints, but isn’t a valid TSP solution.

Therefore, we need to add a new constraint that forces solutions to be a single cycle that spans

the whole graph, not two disconnected ones.

To do this, we’ll use the Miller-Tucker-Zemlin (MTZ) formulation [3]. In the MTZ formulation,

we add a term ui for each node except the first with the condition that if xij = 1, then uj > ui. In

practice, since the simplex method can’t work with strict inequalities, this becomes uj ≥ ui + 1.

Under the MTZ formulation, every cycle needs to include the first node, otherwise we’ll get

uj > ui and uj < ui for some i and j nodes along the disconnected cycle. This forces us to get a

complete cycle and, when minimized, a solution to the TSP.

To enforce this condition in a single inequality in an LP, we get

uj ≥ ui + 1− n(1− xij)

where the −n(1− xij) forces the condition to hold when xij = 1 and there is a connection

between i and j, but also allows enough slack that if xij = 0, then the solution values for ui and

uj don’t matter.

16

Therefore, the Traveling Salesman LP becomes

minimize
n∑

i=0

n∑
j=0,j ̸=i

cijxij

subject to
n∑

i=0,i ̸=j

xij = 1 ∀j Outflow from each node is 1

n∑
j=0,j ̸=i

xij = 1 ∀i Inflow to each node is 1

ui − uj + nxij ≤ n− 1 ∀i, j ≥ 2, i ̸= j MTZ Condition

xij ∈ {0, 1} ∀i, j, i ̸= j

When solved as an LP, the final condition that xij ∈ {0, 1}, isn’t enforced. In our experience,

however, this condition holds true unless two paths have the same cost, in which case the LP

solution can have decimal values along both paths.

For example, we can use this LP to find a TSP solution for a graph with cost matrix

A B C D


A 8 6 2

B 9 14 32

C 49 69 81

D 19 18 17

where each value in the matrix represents the cost of going from the node along the top row to

the corresponding node in the first column (i.e. the cost to go from C to B is 14). By using an

LP and solving for the optimal, minimized path,4 you find the TSP solution is

A C B D
49 8 18

2

4The LP for this problem is described in Appendix A.

17

5 Conclusion

Overall, Linear Programming is a powerful tool with a diverse array of applications. In this paper,

we were able to successfully build an implementation of a popular, and historically rich, method

to solve LPs, and use it to solve two interesting problems. The first, the scheduling problem,

created a framework for an efficient way a small business can plan its labor. The second, the TSP,

explored a famous difficult-to-solve problem and created a simple method to find solutions.

Altogether, in this paper we explore the powerful tool of Linear Programming and learn both how

to solve linear problems and some of the many real-world applications those problems can have.

18

Appendices

A TSP LP and Solution

The LP becomes

minimize
(
9 49 19 8 69 18 6 14 17 2 32 81 0 0 0

)
x⃗

subject to



0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0



x⃗ =



1

1

1

1

1

1

1

1




0 0 0 0 4 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 4 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 0 0 4 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 4 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0 0 4 0 −1 0 1

0 0 0 0 0 0 0 0 0 0 0 4 0 −1 1


x⃗ ≤



3

3

3

3

3

3



19

where

x⃗ =



xAB

xAC

xAD

xBA

xBC

xBD

xCA

xCB

xCD

xDA

xDB

xDC

uB

uC

uD



=



0

1

0

0

0

1

0

1

0

1

0

0

2

0

3


We hope it’s clear why this wasn’t included in the main part of paper.

References

[1] David Avis and Vasek Chvátal. “Notes on Bland’s pivoting rule”. In: Polyhedral

Combinatorics (1978), pp. 24–34.

[2] Dimitris Bertsimas and John T. Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, 1997.

[3] Martin Desrochers and Gilbert Laporte. “Improvements and extensions to the

Miller-Tucker-Zemlin subtour elimination constraints”. In: Operations Research Letters 10.1

(1991), pp. 27–36.

[4] Nebojša V. Stojković, Predrag S. Stanimirović, and Marko D. Petković. “Modification and

implementation of two-phase simplex method”. In: nternational Journal of Computer

Mathematics 86.7 (2009), pp. 1231–1242.

20

[5] P. C. Tulsian and Vishal Pandey. “Quantitative Techniques: Theory and Problems”. In:

O’Reilly ().

21

	Introduction
	Linear Programming
	History
	General Linear Programming Problem
	Simplex Method

	Computer Implementation
	Finding Feasible Regions
	Dealing With Cycling
	Unbounded Solutions
	The Final Algorithm

	Applications
	The Scheduling Problem
	The Traveling Salesman Problem

	Conclusion
	TSP LP and Solution

