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Abstract

In March 2021, the container ship Ever Given crashed in the Suez Canal blocking traffic

through it for six days. This paper explores the trade implications of this event at a port and

country-level. We find that countries and ports with more trade routed to them through the

Canal were affected more immediately after the incident, with imports slowing down by between

70% and 90%. We also find that the event caused propagation effects that applied to a wide

range of would-be-unaffected countries and impacted, on average, at least 0.1% of country’s final

use of goods per year.

1 Introduction

On March 23, 2021, the Ever Given, one of the largest container ships in the world, was grounded

in the Suez Canal. The ship was stranded for six days, during which all trade through the Canal

was blocked (Yee and Glanz 2021). Every day, the blockage held up an estimated $10 billion worth

of trade (Harper 2021). Freeing the ship took a multinational effort with 14 tugboats rotating

the Ever Given in the water and dredgers digging up the sand the ship was stuck in on the shore

(Hincks 2021).
∗Data and replication files for the document and analysis are available at https://github.com/GavinEngelstad/

IntlTradeSuezCanal. If you have questions, contact gengelst@maclester.edu.
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The Suez Canal is one of a handful of maritime chokepoints. Most maritime trade travels

through at least one of these chokepoints, which include other canals like the Panama Canal and

areas with high levels of political instability like the East China Sea, demonstrating their central role

in globalization (EIA 2017). Due to their importance, the risk of a blockage has been highlighted a

number of times (Pratson 2023; Wang, Du, and Peng 2024; Xiao et al. 2022). Still, because of the

rarity of such an event, there are few empirical studies on the implications a blockage would have.

This paper seeks to analyze the risks from marine chokepoint blockages on trade and the

economy for individual geographies through analysis of the blockage caused by the Ever Given.

We find that the blockage had extremely significant direct effects on ports that route significant

amounts of trade through the canal and propagation effects that spread through global production

processes impacting other countries that would have been otherwise unaffected.

The rest of the paper proceeds as follows: Section 2 gives a review of relevant literature and

related work that we build on. Section 3 outlines the theoretical model we use for estimation.

Section 4 explains the empirical model we use for estimation. Section 5 explores the data sources

we use in our analysis. Section 6 estimates the direct effects of the blockage immediately during

and after the event. Section 7 creates a lower bound on the propagation effects of the blockage.

Section 8 concludes.

2 Lit Review

2.1 Maritime Trade and Chokepoints

By volume, about 80% of international trade happens by sea (Sirimanne et al. 2023). Most of

this maritime trade travels through at least one marine chokepoint, or narrow, heavily trafficked

passageway that connects two oceans or seas (Pratson 2023). Many of these chokepoints are located

in regions with rampant political instability or are vulnerable to emerging global threats. In Yemen,

Houthis recently started attacking ships traveling through the Red Sea (Bigg, Shankar, and Fuller

2024). In Central America, the effects of climate change are causing trade flows through the Panama

Canal to drop by 50% (Arslanalp et al. 2023).
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Trade flows through these chokepoints are essential for global food and energy security. Ap-

proximately 80% of maritime oil trade, 50% of the global oil supply, travels through one of just

seven chokepoints, including the Suez Canal (EIA 2017). Additionally, 55% of food imports pass

through one of these same choke points (Bailey and Wellesley 2017). The Suez Canal specifically is

the shortest maritime route from east to west, and therefore plays an important role in trade ini-

tiatives between Asia, Africa, and Europe, including the Chinese Belt and Road Initiative (Rakha

and El-Aasar 2024)

Major disruptions to these chokepoints would have far-reaching ramifications. Pratson 2023

found that an extended closure of any major chokepoint would cause significant increases in trade

costs and force ships to reroute in ways that would affect every other chokepoint. Using AIS data

that let them analyze the tracked movement of ships, Wang, Du, and Peng 2024 found that much

of the world, especially in the Northern Hemisphere and global east, is reliant on just a handful of

these checkpoints. Using an agent-based-model, Meza et al. 2022 found that a chokepoint blockade

would be immediately impactful, especially on energy markets. Additionally, Xiao et al. 2022 found

that the geography of chokepoints are exceptionally vulnerable to a wide variety of threats.

Despite these theoretical studies, empirical studies on the impacts of closing chokepoints are

rare, since chokepoints are kept open. Between 1967 and 1975, the Suez Canal was shut down

by the Egyptian Government, which had significant impacts on trade and output, but this type

of shock is very different from the shorter term and less preventable shock we saw with the Ever

Given (Feyrer 2021). The Ever Given incident gives us an opportunity to verify theoretical findings

with an empirical study of a real, sudden chokepoint closure.

2.2 Maritime Trade as a Network

Using trade volumes as edge weights between node countries, international trade can be modeled

using a web-like network structure (Bhattacharya et al. 2008). This sort of analysis can reveal

a number of patterns in trade, including a power law in GDP and a “rich club” dynamic where

trade is majority controlled by an ever smaller group. On the network, a properly specified gravity

model can accurately predict edge weights and replicate the topological properties of the global
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trade network (Bhattacharya et al. 2008; Dueñas and Fagiolo 2013).

Using this same process on maritime trade networks specifically can reveal important structures

in seaborne trade. Using nodes as ports and edges as voyages between ports, this type of analysis

finds that the networks formed, especially by bigger ships, are very well-connected and fairly stable

(Carlini et al. 2021). Over longer time periods, these networks tend to keep a constant diameter,

or maximum network traversal distance, even as more ports are added and become more navi-

gable (Kosowska-Stamirowska, Ducruet, and Rai 2016). When shocks occur and individual ports

shut down, the network skips over the shutdown port instead of changing its topology completely

(Kosowska-Stamirowska 2020).

A chokepoint closure would act very differently. By their very nature, a chokepoint can’t be

easily skipped over. Therefore, it is important to understand what happens to this network when

chokepoints are blocked instead of a single port being shut down.

One network in particular, constructed in (Verschuur, Koks, and Hall 2022), will be of particular

importance in this paper. Using 2015 data, the authors connected ports via their routes and trade

volumes in a web-like trade network (Figure 2.1). Key for this study, the network also includes

the volume on each edge that had, at some point in its route, traveled through the Suez Canal.

This greatly simplifies our process, since we can use this pre-created network instead of having to

construct our own.

Figure 2.1: The Verschuur, Koks, and Hall 2022 Maritime Trade Network.
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2.3 Supply Chain Shocks and Intertemporal Propagation

Global supply chains have evolved to be exceptionally complex. This complexity can lead a shock

in intermediate goods markets to cause disproportionately large economic disruptions and have

feedback effects that cause long-run disruptions (Elliott and Jackson 2023; Ganapati and Wong

2023; Heiland et al. 2019). Elliott and Jackson 2023 also shows that as the amount of trade increases

across these complex trade networks, the potential for these shocks to have greater impacts around

the globe increases.

Empirically, firm-level analysis can show these sorts of shocks occurred after a 2011 earthquake

in Japan, where US output was significantly affected by the shock (Boehm, Flaaen, and Pandalai-

Nayar 2019). Colon, Hallegatte, and Rozenberg 2019 found that transportation shocks specifically

could have propagating affects through a country’s economy, and have indirect impacts on groups

not typically affected by disasters. Using AIS data on container ship movement, Bai et al. 2024

found that supply chain disruptions cause macroeconomic effects, including inflation.

Analysis of the Suez Canal incident specifically found that it had similar ripple effects. Lee and

Wong 2021 found that the supply chain effects of the incident caused oil and gas prices to surge,

insurance companies to suffer a $31 billion loss, and stopped 12% of global trade. Özkanlisoy and

Akkartal 2022 found that the blockage had ripple effects on global supply chains that persisted

for more than three months after the blockage was resolved. Wan et al. 2023, using a network,

found that these effects were mostly located in Africa, but the blockage also significantly affected

Europe and Asia as well as made the overall global trade network significantly less navigable. A

general equilibrium modeling approach in Gokan et al. 2024 found that the net negative effects of

the blockage totaled to about 0.1% of the global GDP.

One common way of analyzing this propagation uses input-output (IO) tables. Originally pre-

sented in Leontief 1951, these tables allow us to track what intermediate goods different industries

use and where they get them from. Using IO tables, Los, Timmer, and Vries 2015 presents an

approach to figuring out where value comes from at every level of production for a final good.

This paper will use this value-added IO table approach to analyze how the shutdown of the

canal and temporary severing of connections affects the value chains of final goods on both sides of

5



the canal.

3 Theoretical Model

The theoretical model presented in this paper will attempt to capture both the direct and propa-

gation effects that the blockage will cause. The first part of the model will look at how ships travel

through the network and what the potential direct effects of the blockage could be. The second

part will model how these goods are used and how propagation effects could spread through the

network.

For this paper, the trade network will be constructed using ports as vertices and shipping lanes

between ports as links. In this way, we get a directed network that represents all maritime trade.

This network transports a variety of goods. The set G contains the types, or industries, of these

goods, where g ∈ G represents goods from one industry.

For a port i ∈ P , there is vector of goods that are imported xin
i and exported xout

i . The gth row

of the vector, xin
ig, represents the value of goods of type g that are imported into port i. Similarly,

xout
ig is the value of goods of type g that are exported from port i.

Along the network, a connection exists between port i ∈ P and j ∈ P if there exists a shipping

lane connecting the two. This route takes a certain amount of time, tij to traverse and transports

a vector of goods xij . The gth row, xijg, represents the value of good g transported from i to j.

To allow the network to respond to shocks, we’ll add a time dimension. Therefore, the import

and export vectors for port i at time t become xin
i,t and xout

i,t respectively. The transport vector xij,t

represents the vector of goods shipped at time t from node i en route to node j. Since it takes tij

for the goods to travel along the shipping lane, these goods arrive at port j at time t + tij . At a

good level, xin
ig,t, xout

ig,t, and xijg,t represent the value of good g at time t imported into i, exported

from i, and en route from i to j respectively.

Since the value of a port’s exports is equal to the sum of the value of shipping routes from the

port, we get the relationship

xout
i,t =

∑
j ̸=i

xij,t, (3.1)
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meaning the exports from a port is equal to its out-degree centrality in the network. Similarly,

since the value of a port’s imports is equal to the sum of the value of shipping routes entering the

port once they’ve traveled across the shipping lane, we get the relationship

xin
j,t =

∑
i ̸=j

xij,t−tij , (3.2)

meaning the imports into a port is equal to its in-degree centrality in the network tij periods in

the future.

Within a country c ∈ C, there is some set of ports Pc ⊂ P such that every i ∈ Pc is a port in

country c.

For a pair of countries c, d ∈ C, exports from c to d at time t, xX
cd,t, is defined as exports from

any port in c to any port in d plus non-maritime exports, meaning

xX
cd,t =

∑
i∈Pc

∑
j∈Pd

xij,t + xoX
cd,t, (3.3)

where xoX
cd,t is other, non-maritime exports from c to d. Similarly, imports to c from d at time t,

xM
cd,t, is defined as imports to any port in c from any port in d, meaning

xM
cd,t =

∑
j∈Pc

∑
i∈Pd

xij,t−tij + xoM
cd,t, (3.4)

where xoM
cd,t is non-maritime imports to c from d.

Therefore, c’s total exports at time t, xX
c,t, and is defined as

xX
c,t =

∑
d ̸=c

xX
cd,t (3.5)

=
∑
i∈Pc

xout
i,t −

∑
j∈Pc,j ̸=i

xij,t

+ xX
co,t (3.6)

=
∑
i∈Pc

∑
j /∈Pc

xij,t + xX
co,t (3.7)
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where xX
co,t is the total exports from country c through other, non-maritime routes. Similarly, d’s

imports at time t, xM
d,t, are defined as

xM
d,t =

∑
d ̸=c

xM
cd,t (3.8)

=
∑
j∈Pd

xin
j,t −

∑
i∈Pd,i ̸=j

xij,t−tij

+ xM
do,t (3.9)

=
∑
j∈Pd

∑
i/∈Pd

xij,t−tij + xM
do,t (3.10)

where xM
do,t is the imports to country d through non-maritime routes.

c’s imports along with its output, xY
c,t, are used as final goods domestically, xF

c,t, intermediate

goods domestically, xI
c,t, or are exported to be used as final or intermediate goods in a foreign

country. Therefore, we get

xY
c,t + xM

c,t = xF
c,t + xI

c,t + xX
c,t. (3.11)

Rearranging this gets the expression

xI
c,t = xY

c,t + xM
c,t − xF

c,t − xX
c,t. (3.12)

Intuitively, this suggests intermediate goods to be used in production processes in c in the next

period include everything imported or produced minus everything exported or used as a final good.

These intermediate goods are used within the country to produce output in the period based

on some production function Fct : R∥G∥ → R∥G∥. Therefore, we have

xY
c,t = Fct(x

I
c,t−1, zc,t), (3.13)

The production function Fct is assumed to be increasing with respect to all inputs, so ∂Fct

∂xI
cg,t

> 0

for all g ∈ G. This output is then exported, used as final goods, and used as intermediate goods in

the next period.
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3.1 Model Predictions

Based on the model, shocks will affect the network in two ways.

Direct, first-order effects will cause immediate changes in the network. A port shutting down

will change the network by removing shipping routes to that port, causing that port’s would-be

imports to either not be exported or to go somewhere else, consistent with what was observed in

Kobe in Kosowska-Stamirowska 2020. Similarly, the port’s would-be exports will have to be either

used domestically or exported using some other port within the country.

For a chokepoint, these direct effects will be significant in the periods directly after a shutdown.

Letting ij be a shipping route that goes through a chokepoint s tis periods into its route and tsj

periods before the route ends so that tis + tsj = tij and having the chokepoint shutdown at time ts

and open at time to, the traversal time from i to j for a ship leaving at time t becomes

t′ij,t =


tij if t < ts − tis

tsj + to − t if ts − tis ≤ t < to − tis

tij if t ≥ to − tis

(3.14)

where the first and last parts of the equation say that if a ship arrives at the canal before or after

the blockage, the trip will take the normal amount of time and the second part of the equation says

that if the ship does get held up by the blockage, the trip will last as much time as it takes for the

blockage to clear plus its normal length. Therefore, shipments that leave at time t are received at

trij,t =


t+ tij if t < ts − tis

tsj + to if ts − tis ≤ t < to − tis

t+ tij if t ≥ to − tis

. (3.15)

where the first and third equations represent the shipping route taking the normal amount of time

and the second represents the shipment going through the chokepoint once the blockage clears.

Assuming the shock only affects transport and exports are unaffected by the shutdown, total

imports over time stay constant. However, there is a period of time between ts + tsj and to + tsj
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where no goods are received at j from the route.

Therefore, the temporary direct effects for a port’s imports can be calculated using

∆xin
j,t = xin′

j,t − xin
j,t = −

to+tsj∑
t=ts+tsj

∑
i ̸=j

xij,t−tij . (3.16)

These effects can be further aggregated to a country level using equation 3.10. Altogether, the

model predicts a chokepoint shutdown shock would have significant, but temporary, negative direct

effects on imports. These effects depend on the route going through the canal, so their magnitude

is related to the portion of trade into the port that goes through the canal. Additionally, because

of the time it takes to get from the chokepoint to the canal, tsj , the timing of these effects will

depend on the port’s distance from the canal.

Second, indirect, propagation effects will exacerbate these immediate changes and cause them

to persist over time. Since Fct is assumed to be an increasing function, some shock that causes a

decrease in intermediate goods from xI
c,t−1 to xI′

c,t−1 < xI
c,t−1, we know that

xY
c,t = Fct(x

I
c,t−1) > Fct(x

I′
c,t−1) = xY ′

c,t. (3.17)

Assuming other countries exports are relatively unchanged by the shock, using equation 3.11, we

know

xI
c,t + xF

c,t + xX
c,t = xY

c,t + xM
c,t > xY ′

c,t + xM
c,t = xI′

c,t + xF ′
c,t + xX′

c,t (3.18)

Meaning the total of intermediate goods, final goods, and exports must decrease in the period

following the intermediate goods shock. Letting these effects be distributed across all three fac-

tors, that means decreased intermediate goods persist intertemporally and propagate into c’s trade

partners.

Using equation 3.5, we have that when total exports decrease, exports to at least one country

d must decrease. Letting i be the port with affected exports in country c and j be the receiving

port in country d, we have

x′
ij,t < xij,t, (3.19)
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which, using 3.2 means that

xin′
j,t+tij < xin

j,t+tij . (3.20)

Using 3.8, this means

xM ′
d,t < xM

d,t (3.21)

which, like what happened in country c, causes a decrease in intermediate goods, and therefore

outputs. This same effect will, then, continue to propagate intertemporally in d and within the

network through d’s trade partners. The magnitude of this indirect effect will depend on the extent

to which xF
c,t is affected instead of future intermediate goods and the scale effects of Fct, with lower

returns to scale causing output to recover faster since they are able to produce closer to the original

level of output with the decreased amount of inputs.

Therefore, we get the intercountry propagation described in Boehm, Flaaen, and Pandalai-Nayar

2019 and the total economic effects described in Colon, Hallegatte, and Rozenberg 2019.

This model is very simplistic and ignores a number of possible impacts of the blockage, like

rerouting and congestion slowing down trade through the canal when it opens up. Future work

could expand this theory to account for these factors and give a basis to empirically test for these

effects. Still, this provides a good starting point for the analysis in this paper.

4 Empirical Approach

4.1 Building a Trade Network and Estimating Direct Effects

Both for simplicity and due to availability constraints for the data required to make our own

network,1 this paper will base its analysis on the network constructed in Verschuur, Koks, and Hall

2022. Using this network, we have trade flows between ports (Figure 2.1) and flows along routes

that have been through the Suez Canal.

From this network, we can also approximate the distance of a route between ports assuming

1. Other papers use Lloyd’s Shipping Index (Kosowska-Stamirowska, Ducruet, and Rai 2016; Kosowska-
Stamirowska 2020) or AIS data (Wang, Du, and Peng 2024). These databases all have significant paywalls making
them infeasible.
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ships travel across the shortest possible path.2 This gives us a predicted maritime distance for any

route d̂ij between i and j.

Traversal time, tij , will be estimated using the average speed of shipping vessels, v. Using this,

we can say

tij ≈
dij
v

= t̂ij . (4.1)

Using this same reasoning, time to get from the Suez Canal s to j becomes

t̂sj =
dsj
v

. (4.2)

From this shipping network, we can also estimate each port’s reliance on the Suez Canal as

the ratio of trade into the port that goes through the Suez Canal to overall trade into the port.

Therefore, port j’s exposure sj is calculated as

sj =

∑
t

∑
i ̸=j sijfij,t∑

t

∑
i ̸=j fij,t

, (4.3)

where fij,t is the total amount of trade along routes from i to j and

sij =


1 if the route from i to j goes through the Suez Canal

0 otherwise
. (4.4)

Based on the theoretical model presented in 3, we expect port j to be affected by a canal

shutdown t̂sj periods delayed. Based on equation 3.16, we also expect the direct effects to be

proportional to j’s exposure, or the percent of trade that goes through the canal, times the quantity

of trade into j without the canal shutdown. Therefore, we have

Mj,t = (1− sj × ct−t̂sj
)M j,tεj,t (4.5)

where ct is an indicator variable representing whether the canal is closed at time t, Mj,t is port j’s

2. In reality, ships adjust their path to follow “climatological routes” based on currents and wind, but these routes
are close enough to the shortest paths that we can make the approximation (Zissis et al. 2020; Heiland et al. 2019).
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imports in period t such that Mj,t = ∥xin
j,t∥1, and M j,t is the normal amount of trade at time t. To

get an expression we can estimate, we log both sides to get

logMj,t = log(1− sj × ct−t̂sj
) + logM j,t + εj,t. (4.6)

Since, in general sj is small and log(1 − x) ≈ x when x is small, we say (log(1 − sj × ct−t̂sj
)) =

sj × ct−t̂sj
. Therefore, this becomes the model

logMj,t = α0 + α1ct−t̂sj
+ α2

(
ct−t̂sj

× sj

)
+ α3 logM j,t + εj,t. (4.7)

α1 captures any larger trends in shipping caused by the blockage, which we assume to be close to

zero. α2 captures how much more the blockage affects ports more reliant on the Suez Canal.

Since propagation effects have a delay before they have an impact, using higher frequency data

and observing limited time periods after the event can eliminate some endogeneity from propagation

effects and help identify only the direct effects from the shock. To allow for this, we shift the times

in the model forward t̂sj to get the estimated equation

logMj,t+t̂sj
= α1ct + α2 (ct × sj) + βj . (4.8)

Because of the smaller period the model is designed for, we assume logM j,t will stay more or less

constant over time and is therefore lumped into the port fixed effects term βj . This model excludes

any time fixed effects term, so it can’t control for trends in trade over time. However, these are

less applicable since the model is meant to be used with higher frequency data in a smaller time

period, meaning there will be less intertemporal variation.

Finally, we’ll also estimate the effects at a country level. Letting t̂sc and sc represent the average

of t̂sj and sj respectively for all ports j in country c weighted by share of imports, we get the model

logMc,t+t̂sc
= α1ct + α2 (ct × sc) + βc. (4.9)
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Figure 4.1: Example World Input-Output Table.

Outputs Final Demand Total Output   Z11 . . . Zn1 F11 . . . Fn1 xY
1

Inputs
... . . . ...

... . . . ...
...

Zn1 . . . Znn Fn1 . . . Fnn xY
n

( )Value Added V⊤
1 . . . V⊤

n

( )Total Output xY⊤
1 . . . xY⊤

n

4.2 Propagation Effects

To estimate the propagation effects, we’ll assume Fct in section 3 is a linear transformation per

Leontief 1951. Using Leontief techniques, we can follow value chains backwards through production

processes to estimate what portion of all final use, not just imports, was affected by the blockage.

Leontief input-output analysis uses input-output tables to model production processes. Figure

4.1 shows a stylized version of one of these tables. Z shows what intermediate goods are used

in the production of outputs. Zcd contains the intermediate goods from country d used in the

production of outputs in c where zcd,kℓ has the intermediate goods from industry ℓ used in the

production of outputs in industry k. The final demand matrix F includes all uses for goods that

aren’t intermediate production processes, like consumption. Fcd shows the final goods from c

used in d and fcd,kℓ shows the final goods from industry ℓ used for k. The value-added matrix

V demonstrates where value is added to products without consuming intermediate goods. These

include wages, profits, and taxes. Vc is the value added in country c and vc,kℓ is the value added

in industry ℓ from k. The xY vector along the right and bottom are equal and contain the total

output from each production process. xY
c is the total output in country c and xc,ℓ is the total

output in industry ℓ. In our model, we aggregate final use and value added into a single vector

xF = F1 and xV = V1 where 1 is the vector of all 1s, essentially summing all possible types of

final use and value added within a country-industry together.

Using these matricies, we divide each column i in Z by their associated value xYi in xY to get

the inputs used per unit of output matrix A, and we divide each column i in xV by xYi to get the
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value added per unit of output vector W.

From these, we know

xY = AxY + xF .

Rearranging this gets

xY = (I−A)−1 xF , (4.10)

the core equation from Leontief input-output (IO) analysis which tells us how much output is

needed based on the demand for final goods.

Following Los, Timmer, and Vries 2015, we multiply both sides by Ŵ to get

ŴxY = Ŵ (I−A)−1 xF (4.11)

where Ŵ is the matrix with W along its diagonal and 0s everywhere else. By definition of W,

ŴxY = xV . Therefore, we have

xV = Ŵ (I−A)−1 xF . (4.12)

Importantly, this expression holds for any vector of demand for final goods xF we plug in on

the right. For example, to find where value was added to final goods consumed in a specific country

c, we set xF
c to a column vectors of all 0s except where c’s final demand would be and plug it in to

get

xV
c = Ŵ (I−A)−1 xF

c (4.13)

where xV
c tells us where value was added through intermediate production and exports for goods

used in c.

We can then turn xV
c into a lower bound for the propagation effects of the Suez Canal. If an

entry in xV
c comes from a country on the other side of the Canal than c, it had to come through

the canal at least once. Goods could travel through more than once at different stages in their

production, which would cause this method to underestimate the effects of the blockage. This effect

is why we’re considering our estimation a lower bound instead of prediction for the impact of the

blockage.
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Since the Leontief setup assumes production is linear, value added can be divided to get any

smaller period. For example, we can say half the total value added over the year was added in

half the year. This allows us to look at the effects of the six-day blockage specifically rather than

looking at how much of the total value used in the entire year the IO table was created for came

through the canal, which isn’t the effect we’re interested in.

4.3 Propagation Effects Limitations

There are a handful of issues with this methodology which affect the reliability of the estimates.

It makes very strong assumptions about when and how often goods travel across the Suez Canal.

This effect means the estimate from this paper should be viewed as a lower bound, not an actual

estimate, but also means we ignore trade that goes through alternate routes, like around the Horn

of Africa or crosses the Pacific and travels across the other side of the world.

Like the model in Section 4.1, it assumes countries prefer to trade along the most direct maritime

route possible when estimating whether the step in the value chain was affected by the canal

shutdown. This estimation is known to be an oversimplification of reality (Zissis et al. 2020), but

is generally accurate.

It also doesn’t allow us to estimate propagation effects for inland countries, even though Colon,

Hallegatte, and Rozenberg 2019 suggests they should face some despite not being directly exposed

to the shock. In this way, we’re only able to examine propagation effects in a limited sample of

countries.

Finally, it makes very strong assumptions about the linearity of the production function. We

assume that the value and type of goods traveling through the canal to a country is continuous and

uniform in order to make our estimate for the 6-day period effects.

Still, this method gives us a strategy to very conservatively estimate the second order effects at

a country level.
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Figure 5.1: Suez Canal exposure scores.
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Countries with no calculated canal score, meaning they have no ports included in the network, are shown in gray.

5 Data

5.1 Network

For this paper, we’ll use the network outlined in Verschuur, Koks, and Hall 2022. Constructed

using a combination of import and AIS data, this network connects 1,357 ports around the world

along commonly used maritime routes. Importantly, it also includes 2015 trade volumes along each

route in dollar and tonne amounts. The network and dollar amount trade volumes are shown in

Figure 2.1.

The Verschuur, Koks, and Hall 2022 network also includes information about trade volumes

along each route that have traveled through specific chokepoints, including the Suez Canal. For

each route, we can divide dollar-amount flows that have come through the Suez Canal by total

dollar-amount flows to get the Suez Canal exposure score we use in the empirical model presented

in Section 4.1.

For port-level analysis, we use the score for the route that travels into the port.3 At a country

level, we average the scores for all the ports within a country, weighting them by dollar-amount

trade volume to avoid small, unimportant ports being disproportionately represented in the score.

The Suez Canal exposure scores are presented in Figure 5.1.

3. This means the score is calculated using both imports and transhipments, where goods are kept on a ship to
travel to another port later in a ship’s route.
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Figure 5.2: Maritime Distances from the Suez Canal.
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Countries with no calculated distance, meaning they have no ports included in the network, are shown in gray.

Finally, the network includes data on the length of each route. This means we can calculate

a minimum for how far ships need to travel to get from the Suez Canal to the port. This will be

used to determine the lags for each port and country in the models presented in Equations 4.8 and

4.9. Especially as ports or countries get farther away from the canal, ships may take less direct

routes and deliver goods to other ports on the way, meaning the approximation may underestimate

distance traveled and, therefore, overall effects. Therefore, the actual effects will be more spread

out and picked up less in the model for some, further ports. Still, our strategy gives us a method

for analysis, and this effect will be lessened for the closer ports to the canal, which tend to have

higher exposure (Figure 5.1).

Figure 5.2 shows the calculated maritime distances from the canal. For each port, we use a

shortest-maritime-path approximation to find the distance. To aggregate at the country level, we,

again, average the port level distances weighting by dollar-amount trade volume.

5.2 Imports

The model in Section 4.1 uses the network statistics from Section 5.1 and high frequency import

data. Using AIS data, Cerdeiro et al. 2020 outlines a process to estimate country-level daily

maritime imports. Arslanalp, Koepke, and Verschuur 2021 expands this process to port-level daily

maritime imports. These estimates are both published weekly by the IMF for 113 countries and
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Figure 5.3: Total Imports
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Imports summed between March 1, 2021 and May 31, 2021. Countries with no data are shown in gray.

1,401 ports. Some of these ports have missing data from 2021, meaning our analysis covers 1,357

ports.

These estimates exhibit large geographic variability, but only random intertemporal variability,

especially when aggregated. The geographic variability, shown in Figure 5.3, is to be expected,

since there are many ports of different sizes in the world. Figure 5.4 shows what imports look like

over time aggregated and for a handful of example ports and countries. The aggregated estimates

on the far left stay relatively consistent over time, justifying the lack of time fixed effects in the

estimating equation since time effects would only pick up global trends.

5.3 Input-Output Tables

To estimate the second order effects, we’ll use the Inter-Country Input-Output Tables from the

OECD. These tables allow us to get an industry level view at how intertwined global value chains

are on.

The tables from the OECD include 76 countries plus one entry for the rest of the world, 45

industries, 6 final uses, and 2 areas value can be added. Therefore, Z is a 3, 465 × 3, 465 square

matrix of intermediate good use, F is a 3, 465 × 462 matrix of final goods use, V is a 3, 465 × 2

matrix of value added, and xY is a 3, 465× 1 vector of outputs.

Unfortunately, these tables are only available through 2020. Because of the 2020 COVID shock,
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Figure 5.4: Daily Imports For Select Ports
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(a) Daily port-level imports summed and at three ports
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(b) Daily country-level imports summed and in three countries
Data shown from March 1, 2021 and May 31, 2021. The first graph in each row is the total for all ports or all
countries that day, then the next three graphs show different example ports or countries. The first graph in the two
rows are different because the country-level data includes small ports that aren’t in the port-level dataset.

we’ll use the data for 2019 in our analysis, however we’ll also make similar estimates using 2016-2020

data to make sure our results stay consistent intertemporally.

6 First Order Effects Estimation

6.1 Estimation

The results for the port model in Equation 4.8 are in Table 6.1. The speed used to lag port

data based on how far they are from the canal is chosen based on speed information in Sirimanne

et al. 2022. The exact specification in Equation 4.8 is model (2) in the table and our preferred

specification. (1) is identical to (2) except is excludes the indicator variable for dates during the
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Table 6.1: Port Model Regression Results.

Total Cargo Tanker
(1) (2) (3) (4) (5) (6)

Exposure × Crash -0.999∗∗ -1.171∗∗∗ -0.686∗∗ -1.237∗∗∗ -0.999∗∗ -0.733∗∗
(0.426) (0.448) (0.314) (0.405) (0.426) (0.326)

Crash 0.045 0.011 0.012
(0.036) (0.034) (0.028)

Port FE Yes Yes Yes Yes Yes Yes
Speed (km/h) 40 40 40 40 20 20
Observations 48,744 48,744 48,744 48,744 48,744 48,744
No. of Ports 1,354 1,354 1,354 1,354 1,354 1,354

R2 0.519 0.519 0.530 0.530 0.408 0.408
Notes: Dependent variable: Log Imports. Standard errors in parentheses. Regression ran across all ports from
3/1/2021 to 4/5/2021. The speed was used to calculate lags based on how far a port is from the Suez Canal.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

blockage and only has the interaction term. (3) and (4) are analogous to (1) and (2) but look only

at dry cargo imports. Similarly, (5) and (6) are analogous to (1) and (2) but look only at wet

tanker imports.

Across all specifications, the model finds a statistically significant negative α2 term representing

the relationship the interaction term between our canal exposure measure and the crash time period

have with log imports. Across all models, the interaction term is significant at the 5% level and in

models (2) and (4), the models with an indicator variable for total and cargo imports respectively,

it’s significant at the 1% level. The coefficient for the indicator variable for the crash is positive

but not significant for all three specifications, suggesting there may have been an overall uptick in

imports across all ports after the time it takes to get from the canal to the port during the blockage.

This may be catching some random daily trends in imports, which is analyzed in a robustness check

that adds time fixed effects, or could be caused by some type of diversion effects from the canal

blockage that aren’t in the theoretical or empirical model.

The results for the country model are outlined in Table 6.2. Each model is the same as their

equivalent in Table 6.1, variables are just aggregated to a country-level. For example, model (1)

used an interaction term between the country-level Suez Canal exposure and the time the blockage

happened adjusted by distance to the country to predict total maritime imports for the country.
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The results for overall imports in this model are identical in direction and significance, though

much more extreme compared to the port model. The interaction term in both (1) and (2) is

significant at the 5% level and negative and the indicator variable is insignificant, although positive.

The cargo and tanker models have no statistical significance at a country-level. The tanker

model specifically has all the coefficient values flip direction. The statistical ambiguity suggests

that the method of modeling the time a ship affected by the blockage would get to the country

may not work as well when aggregated, likely due to the fact that different ports in the country

take different amounts of time to get to and from the canal and the idea that rerouting could be

more likley within a country. This could also explain why the sign on tanker imports flips — it’s

picking up a lot of noise since the canal blockage effects are ambiguous.

Using the preferred specification in Model (2), we can map these country and port level estimates

to a real world interpretation for the effect of the blockage. Figure 6.1 shows the predicted percent

change in imports versus Suez Canal exposure for ports and countries based on our model. The line

in the center shows the predicted percent import effect based on exposure. The density plots on

the top show the distribution for exposure and the density plots on the right show the distribution

for predicted import effect.

Based on the density plots, we can see that most ports and countries are relatively unexposed, so

Table 6.2: Country Model Regression Results.

Total Cargo Tanker
(1) (2) (3) (4) (5) (6)

Exposure × Crash -1.821∗∗ -2.438∗∗ -1.210 -1.867 0.312 0.526
(0.846) (1.107) (1.045) (1.245) (1.100) (1.325)

Crash 0.163 0.173 -0.056
(0.192) (0.166) (0.202)

Country FE Yes Yes Yes Yes Yes Yes
Speed (km/h) 40 40 40 40 20 20
Observations 3,100 3,100 3,100 3,100 3,089 3,089

No. of Countries 90 90 90 90 90 90
R2 0.515 0.515 0.511 0.511 0.522 0.522

Notes: Dependent variable: Log Imports. Standard errors in parentheses. Regression ran across all countries from
3/1/2021 to 4/5/2021. The speed was used to calculate lags based on how far a country is from the Suez Canal.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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the blockage has limited effects on them. Both distributions have a significant right skew, however,

meaning there are a handful of ports and countries that we predict a fairly large effect for. For

example, the 47 ports that are at least 10% exposed see a 7.0% decrease in imports during the

blockage and the 10 countries that are at least 10% exposed see a 7.7% decrease in imports during

the blockage. This highlights the economic significance of the event for the most exposed ports

and countries, since, although the effects were insignificant at the peak of the distribution, there

are quite a few are as which were meaningfully impacted.

Altogether, these models outline the risks for a single port or country routing most of their

trade through a single chokepoint. Doing so makes them vulnerable to significant decreases in

trade during events that block shipments going through the chokepoint.

6.2 Robustness

Speed Choice. In the model, we line up imports with the blockage by assuming ships travel at

a certain speed. In our results, we’ve used 20 km/h as the speed tankers move at and 40 km/h

as the speed other ships move at. We can test how sensitive our results are to this assumption by

Figure 6.1: Estimated effects of the blockage.
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running the model for many assumed speeds and seeing how the results change.

Figure 6.2 shows the results for the regressions on ports and Figure 6.3 shows the results for

the regressions on countries for integer speeds between 5 and 100 km/h.

Figure 6.2: Port Regression Estimates by Assumed Speed
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Regression estimates for the α2 coefficient on the interaction term for assumed speeds between 5 and 100 km/h.
The first graph corresponds to (2) in Table 6.1, the second to (4), and the third to (6). 95% confidence interval

shown shaded in gray and the speed used in Table 6.1 shown by the vertical dashed line.

The port graphs in Figure 6.2 suggest varying levels of robustness to changes in assumed ship

speed. The total and cargo regressions get similar results for any assumed speeds within the

neighborhood of the 40 km/h value presented. Especially for faster speeds, the coefficient would

stay within the same realm and be significant, at least at the 5% level shown on the plot. The

tanker regression would get similar results for any assumed speed very near the 20 km/h value
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used. A slight increase in assumed speed would yield a value that is both more significant and a

larger effect on exposed ports. However, increasing or decreasing the assumed speed by a moderate

amount in either direction would cause the model to lose significance.

Figure 6.3: Country Regression Estimates by Assumed Speed
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Regression estimates for the α2 coefficient on the interaction term for assumed speeds between 5 and 100 km/h.
The first graph corresponds to (2) in Table 6.2, the second to (4), and the third to (6). 95% confidence interval

shown shaded in gray and the speed used in Table 6.2 shown by the vertical dashed line.

The country graphs in Figure 6.3 suggest the current results are also robust to changes in

assumed speed. Estimations near the dashed line have very similar significance and coefficient

values, but that doesn’t mean as much given the Table 6.2 regressions for cargo and tanker imports

aren’t significant. Interestingly, using a much slower speed just under 20 km/h would yield much

more significant results, both statistically and economically. This might suggest that the spread of
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a country causes the impact of the canal blockage on a country’s total imports to be more delayed

than for a single port in a specific place. It could also suggest that ships are spending large amounts

of time idle, since the average speed estimates in Sirimanne et al. 2022 only include ships going

faster than 6 knots (∼11 km/h), but if this was the primary cause, we’d expect it to be more visible

in Figure 6.3 since it would have the same impact on ports as countries.

Overall, the results are fairly robust to changes in assumed speed within the neighborhood of

what was used previously in the paper with estimation results changing significantly only with

moderate or large changes in assumed speed.

Distance Effects. Dispersion effects caused by ships not traveling at exactly the assumed speed

would have a larger effect farther away. Furthermore, to get to locations farther away, taking an

alternate routes that doesn’t go through the Suez Canal has less of a trade-off. The shortest route

from Mumbai to both New York and Naples is through the Suez Canal, but taking a route around

the Horn of Africa is closer in length to the initial path going to New York than that to Naples.

Therefore, the effects of the shutdown might be different at different distances from the canal.

To test for this, we split the ports into three bands based on their distance to the Suez Canal.

The first band contains the closest ports, the second band contains the next-closest ports, and the

third band contains the farthest ones. We then run the regression separately for each of these three

bands to compare whether the effects are different.

Table 6.3 shows the results for this estimation on ports. For each band, we use one model with

just the interaction term and one other model with the interaction term and indicator variable on

total log Imports. The first band includes ports within 2,500 km of the canal, second includes ports

between 2,500 and 10,000 km of the canal, and the third includes ports more than 10,000 km from

the canal. We choose these bounds to separate ports that are very close to the canal, ports that

are a moderate distance from the canal, and ports that are far from the canal.

The results for the first band are identical in direction and significance than the results in

Table 6.1. This makes sense, since based on Figure 5.1, the most exposed ports which drive the

relationship in Table 6.1 are in this first band. This suggests the closure may have had a larger

than predicted effect on the most exposed ports, especially closer to the Canal.
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Table 6.3: Banded Port Regression Results.

Under 2,500 km 2,500-10,000 km Over 10,000 km
(1) (2) (3) (4) (5) (6)

Exposure × Crash -1.582∗∗ -1.744∗∗∗ -0.405 0.022 -0.290 -1.335
(0.587) (0.775) (0.632) (0.662) (1.299) (1.372)

Crash 0.055 -0.104∗ 0.130∗∗∗
(0.180) (0.062) (0.047)

Port FE Yes Yes Yes Yes Yes Yes
Speed (km/h) 40 40 40 40 40 40
Observations 3,924 3,924 16,308 16,308 16,200 16,200
No. of Ports 109 109 453 453 450 450

R2 0.471 0.471 0.481 0.481 0.545 0.545
Notes: Dependent variable: Log Imports. Standard errors in parentheses. Regression ran across all ports within
each band from 3/1/2021 to 4/5/2021. The speed was used to calculate lags based on how far a port is from the

Suez Canal.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In the second band, the results become very indeterminate. The interaction term is small and

insignificant in both (2) and (3). There is a slight across-the-board decrease in imports in the

indicator variable, but this is only significant at the 10% level. The third band has a larger and

more economically meaningful interaction term coefficient in model (6) with a value that lines up

with what is found in Table 6.1, but it is statistically insignificant. The indicator variable is positive

and significant, suggesting ports farther from the canal might have had more trade divert to them

during the blockage when closer ones were harder to get to. These ambiguous predictions might

be driven by the fact that second and third bands have very few ports that are exposed.

Table 6.4 shows these estimates for countries using these same bands. The weighted average

distance for ports used to calculate lags is used to separate countries into their bands.

The closest band loses statistical significance, but the coefficient estimates are in line with our

earlier predictions. The second band has a much larger predicted effect, but also has a much larger

positive coefficient, possibly suggesting there was a lot of trade redirected a moderate distance from

the canal. The final band coefficients flip in direction, but have massive standard error bars and

are likely affected by the same lack of variability in canal exposure as the farther away ports that

would skew the results and make them less accurate.

These results for the most exposed, closer ports and countries suggest the initial estimates
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Table 6.4: Banded Country Regression Results.

Under 2,500 km 2,500-10,000 km Over 10,000 km
(1) (2) (3) (4) (5) (6)

Exposure × Crash -2.227∗ -0.964 -0.523 -4.615∗∗∗ 1.037 3.218
(1.077) (0.969) (1.049) (1.534) (2.045) (11.064)

Crash 0.400 0.607∗∗∗ -0.070
(2.641) (0.197) (0.369)

Port FE Yes Yes Yes Yes Yes Yes
Speed (km/h) 40 40 40 40 40 40
Observations 448 448 1,382 1,382 1,270 1,270

No. of Countries 14 14 39 39 36 36
R2 0.352 0.354 0.502 0.504 0.541 0.545

Notes: Dependent variable: Log Imports. Standard errors in parentheses. Regression ran across all ports within
each band from 3/1/2021 to 4/5/2021. The speed was used to calculate lags based on how far a port is from the

Suez Canal.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

are correct in their predictions, but may be underestimating effects in their coefficients. It also

suggests that the slight across the board predicted increases in imports during the blockage, shown

by the positive indicator coefficient in model (2) of Table 6.1 and 6.2, could be driven by farther

and moderate distance ports and countries getting trade diverted to them, and not trends in more

exposed ports closer to the event.

Other Checks. We find the results are robust to other changes in our model and predictors.

Using the same network, we can create an exposure score that looks on the quantity of trade

that goes into the port through the Suez Canal, not value. These measures are correlated, since

they measure the same thing, but not identical (Figure A.1). Using this alternate measure, we

find similar, even more significant effects of the blockage across all models except the country-level

tanker one, which also had some weird behavior in our value-based model (Table A.1 and A.2).

To make sure the trends we’re seeing are consistent through the whole period and don’t overflow

past when the blockage was cleared, we estimate the dynamic model

logMj,t+t̂sj
= αtsj + βj + εj,t (6.1)
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and

logMc,t+t̂cj
= αtsc + βc + εj,t (6.2)

where each period t has it’s own coefficient for how it was affected by the blockage. The results

to this are shown in Figure A.2. In general, the effects lose statistical significance, likely because

we’re losing a lot of power by adding this many new variables, but do persist for the whole period

and go away when the blockage is cleared like our model predicts.

In our model, we exclude time fixed effects since all of our data comes from a short period,

which limits the general trends we’d need time effects to control for. We can, however, estimate

the model

logMj,t+t̂sj
= α2 (ct × sj) + βj + γt + δt+t̂sj

(6.3)

for ports and

logMc,t+t̂sc
= α2 (ct × sc) + βc + γt + δt+t̂sc

(6.4)

for countries where γt is the reference time fixed effects, since the times for the actual imports have

been adjusted to line up with time t, and δt+t̂sj
and δt+t̂sc

are the time fixed effects to see if the

addition of these would impact our results. Table A.3 shows the results to this estimate. We find

the results are comparable to our estimates, suggesting the exclusion of these effects isn’t driving

our results.

Finally, we’ll use placebo regression to test that the model isn’t picking some structural char-

acteristics of canal exposure and is picking up the effects of the blockage. Table A.4 shows the

estimated results using Panama Canal exposure during the time period, which shouldn’t be related

to the blockage, and Table A.5 shows the estimated results looking at the same period in 2019.

Both tables show results that aren’t significant, both economically and statistically, suggesting the

results from the paper are related to the blockage and not some bigger pattern.
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Figure 7.1: Estimated Propagation Effects, Histogram

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Est. Percent of Final Use Blocked

0

2

4

6

8

10

12

N
u

m
b

er
of

C
ou

n
tr

ie
s

Estimated lower bound propagation effects of a 6-day stop to value-added that goes through the Suez Canal as a
percentage of final use by country. Note that 100% is the maximum possible, not 1.

7 Propagation Effects Estimation

7.1 Estimates

Using the IO tables and the process outlined in Los, Timmer, and Vries 2015, we calculate the

value added by each country to each other country. Then, by calculating the fastest routes between

ports in pairs of countries and weighting by their share of trade between both countries, we can

estimate the percentage of trade between the two countries that goes through the Suez Canal. This

technically creates a continuous variable in [0, 1], but in reality more than 80% of the values are

either 0 or 1.

As discussed in Section 4.2, this only creates a lower bound since it assumes no goods cross

the canal more than once between production processes. It also assumes trade is going by sea

when possible, a reasonable assumption since more 80% of global trade happens by sea (Sirimanne

et al. 2023), and this number is likely deflated by landlocked countries, which are excluded from

our analysis since we use ports to estimate whether goods travel through the canal. It also assumes

ships travel along the shortest route, an assumption that is discussed more in Section 4.1.

Using the linearity assumption with Leontief IO analysis, we then estimate how much of this

value would have passed through the canal during the six-day blockage. The results for this

estimation are shown in Figure 7.1 and Table 7.1.
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Figure 7.2: Estimated Propagation Effects, Locations.
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The histogram in Figure 7.1 has a significant right-skew. Our estimated lower bound on the

effect of the blockage on final use was less than 0.1% in most countries, but some countries were

affected substantially more. The largest effect predicted was just above 0.8%. On their own, a

0.1%, or even 0.8% decrease in expenditure is economically meaningless, but in the context of an

accident caused by only a single cargo ship, demonstrates a significantly higher than ideal effect

and illustrates the fragility of global value chains.

Colon, Hallegatte, and Rozenberg 2019 finds that transport shocks have propagating effects on

areas that wouldn’t normally be impacted. To test this idea, we observe where our lower-bound

propagation effects are located geographically. A map of the estimated effects is shown in Figure

7.2

On the map, the country where the canal is located, Egypt, is very affected. Russia, the other

most impacted country, is near the canal, though the impacts for both of these may be a result of the

assumptions made about how trade routes are connected and overestimated since they have ports

on both sides of the canal. All the countries near the canal, especially in Europe and the Middle

East, are very affected, but some countries farther away, like Australia, Vietnam, and Thailand,

Table 7.1: Estimated Propagation Effects, Summary Statistics

Count Mean St. Dev Min 25% 50% 75% Max
Total Effects 68 0.098 0.122 0.002 0.053 0.081 0.110 0.812

Notes: Note that 100% is the maximum possible, not 1.
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are also very affected, so the blockages effects aren’t entirely concentrated in the geographic area

near the blockage.

Separating the histogram and summary statistics from Figure 7.1 and Table 7.1 by continent

gets Figure 7.3 and Table 7.2.

There is quite a bit of variation between continents. Europe, Asia, and Africa have very similar

estimated effects, especially between percentiles. The 75th percentile estimated effect for all three

is within 0.01 percentage points of each other. The means display variation, likely because the

two most affected countries, Egypt and Russia, pull the mean up. North and South America also

follow similar patterns between them. The median estimated lower bound for counties in North and

South America, however, is 4 times lower than the median for a country in Oceania and 6-8 times

Figure 7.3: Estimated Propagation Effects by Continent, Histogram
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Note that 100% is the maximum possible, not 1. Russia treated as part of Europe and Türkiye as part of Asia.

Table 7.2: Estimated Propagation Effects by Continent, Summary Statistics

Count Mean St. Dev Min 25% 50% 75% Max
Africa 8 0.148 0.273 0.004 0.004 0.064 0.113 0.812
Asia 23 0.106 0.059 0.044 0.069 0.091 0.117 0.257
Europe 27 0.112 0.107 0.059 0.076 0.087 0.107 0.635
North America 4 0.011 0.005 0.008 0.008 0.010 0.014 0.020
Oceania 2 0.042 0.031 0.020 0.031 0.042 0.053 0.064
South America 5 0.006 0.004 0.002 0.002 0.008 0.009 0.010
Total 68 0.098 0.122 0.002 0.053 0.081 0.110 0.812

Notes: Note that 100% is the maximum possible, not 1. Russia treated as part of Europe and Türkiye as part of
Asia.
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lower than for countries in Africa, Asia, or Europe. This suggests there could be some relationship

between geography and propagation effects.

To test this, we examine how the lower bound effect estimate is related to maritime distance

from the Suez Canal. A plot of this is shown in Figure 7.4. Estimated distance from the Suez

Canal is found using the shortest route approximation in Section 4.1.

Figure 7.4: Estimated Propagation Effects by Distance
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Note that 100% is the maximum possible along the y-axis, not 1. Russia treated as part of Europe and Türkiye as
part of Asia. Best fit line calculated using OLS (Results not shown).

The trendline on the graph is negative, but around it there is significant variation. Especially

within Asia, there are quite a few countries with the higher than expected effect. North and South

American countries are clustered in the bottom right with lower than expected effects, which makes

sense given the size of the effects in those continents were extremely low (Table 7.2).

We can also analyze the propagation effects compared to the exposure score used in Section 6.

From Section 6, we know these exposure scores are predictive of the direct effects of the blockage.

Finding a strong correlation between propagation effects and exposure scores would contradict the

idea that propagation effects spread and impact would-be-unaffected groups (Colon, Hallegatte,

and Rozenberg 2019). This comparison is shown in Figure 7.5

Like in the distance comparison, the results are correlated, but there is significant, unpredicted

variation, especially in the bottom-left cluster with low exposure and low propagation effects. This
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suggests that in general, more exposed ports are affected more by propagation effects, but also that

there are many exceptions to this rule.

Therefore, our lower bound estimation is consistent with Colon, Hallegatte, and Rozenberg 2019

in that effects are distributed across groups that wouldn’t be affected directly. We don’t find these

effects are distributed evenly, however, just that they exist in certain cases. There are quite a few

countries that face higher propagation effects than would be suggested by their distance or canal

exposure, but there are just as many countries that face very limited propagation effects.

7.2 Robustness

Time of Estimation. Because 2021 data during the event was unavaliable, the previous estima-

tions were made using 2019 data. The accuracy of these estimates depends on the value-added

across the canal in IO tables to be relatively consistent over time so we can extrapolate them to

2021. Therefore, we reestimate the model using IO tables from different years between 2016 and

2020.

The results of this estimation are shown in Figure 7.6. The same process used to estimate the

Figure 7.5: Estimated Propagation Effects by Exposure
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Estimated lower bound propagation effects of a 6-day stop to value-added that goes through the Suez Canal as a
percentage of final use by country versus Suez Canal exposure. Colored by continent. Note that 100% is the

maximum possible along the y-axis, not 1. Russia treated as part of Europe and Türkiye as part of Asia. Best fit
line calculated using OLS (Results not shown).
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initial model was repeated for years between 2016 and 2020. The results are plotted against each

other, with a best fit line and basic OLS statistics also shown.

Figure 7.6: Estimated Propagation Effects in Different Years
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Y and x-axis are the propagation effect estimates using data from that year. Note that 100% is the maximum
possible along the y-axis, not 1. Best fit line calculated using OLS.

In every model, the R2 for the best fit line is very close to 1, meaning the two estimations are

almost 100% predictive of each other. The β0 intercept is almost 0 and the β1 coefficient is almost
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1, which suggests the models get mostly identical results.

Therefore, we can conclude that there is little intertemporal variation and our 2019 estimation

is applicable during the time of the blockage in 2021.

Other Checks. When we created our lower bound estimate, we completely excluded the effects of

the “Rest of World” category in the data and assumed it didn’t cross the canal. Figure B.1 shows

what happens when we flip that assumption and assume all ROW trade goes through the canal.

We see limited effects, suggesting out results are robust to the effects of trade from other, excluded

countries and that the included countries trade the most with other included countries.

8 Conclusion

Overall, we have found the Suez Canal blockage had significant impacts on global trade, primarily

in countries more exposed to the canal.

The estimates in Section 6 suggest that an exposed port could see up to a 70% decrease in

imports and an exposed country could see up to a 90% decrease in imports compared to normal

canal operation. These results are all robust to changes in our measures and assumptions and aren’t

a result of general trends. The effects are also found to be stronger at the start of the blockage and

focused nearer to the blockage, though these may just be an artifact of our estimation method and

data.

The lower bound in Section 7 suggests that most countries had approximately 0.1% of their

annual final goods use affected by the blockage, a result that holds economic significance due to

the fact that the shock that caused this was a single ship stranded in a single canal for only six

days. These impacts are concentrated around countries closer to the canal and more exposed to the

canal, but a handful of countries that fit neither of these criteria were also significantly affected,

illustrating the propagative nature of these second order effects.

These results are exceptionally important given current events surrounding maritime choke-

points. As of March 2024, Houthi Rebels have attacked more than 60 ships in the Red Sea, a

chokepoint that leads into the Suez Canal (CRS 2024; Bigg, Shankar, and Fuller 2024). The effects
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of climate change in Central America are causing lower water levels in the Panama Canal, making

trade through it slow down (Arslanalp et al. 2023). Our results suggest countries should insure

themselves against these canal shocks by reducing exposure to chokepoints.

8.1 Limitations

This research has a number of limitations. The theoretical model ignored congestion, trade costs,

and non-maritime trade. Much of the empirical work was done based on assumptions for how ships

travel, the speed they travel at, what domestic production functions look like, and so on. These

assumptions were primarily made due to limitations in the datasets that made a more robust

analysis impossible.

There also are possibilities that there are confounding factors that aren’t accounted for in our

models. The results appear reasonably robust to different types of trend analysis that should

capture many of these effects, but this possibility can never be entirely eliminated.

8.2 Farther Work

Farther research into this topic should attempt to address many of these limitations. Using AIS

data could alleviate many of the issues with data that have plagued us throughout the paper. It

would allow us to get a better view at exactly what happened to ships impacted by the blockage

and perform a more robust analysis, especially of the first-order effects.

New research could also look into the events going on today. The slowdown of trade through

the Panama and Suez Canal is very different from the sudden blockage in the Ever Given incident.

These events are fairly recent, so a comprehensive analysis may be impossible for the next year

or two, but they have been going on for long enough to get preliminary results about how those

slower shocks with more longevity affect trade differently than sudden blockages that gets addressed

within a week.
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Appendices

A First Order Effects

Figure A.1: Value Suez Canal Exposure Versus Quantity Suez Canal Exposure.
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(a) Port-Level Exposure. R2 = 0.733.
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(b) Country-Level Exposure. R2 = 0.891.
Best fit lines calculated using OLS (Results not shown).

Table A.1: Port Model Regression Results Using Quantity Exposure.

Total Cargo Tanker
(1) (2) (3) (4) (5) (6)

Q Exposure × Crash -1.467∗∗∗ -1.655∗∗∗ -1.711∗∗∗ -1.768∗∗∗ -0.795∗∗ -0.830∗∗
(0.494) (0.508) (0.437) (0.447) (0.362) (0.373)

Crash 0.048 0.015 0.009
(0.036) (0.033) (0.027)

Port FE Yes Yes Yes Yes Yes Yes
Speed (km/h) 40 40 40 40 20 20
Observations 48,744 48,744 48,744 48,744 48,744 48,744
No. of Ports 1,354 1,354 1,354 1,354 1,354 1,354

R2 0.519 0.519 0.530 0.530 0.408 0.408
Notes: Dependent variable: Log Imports. Standard errors in parentheses. Regression ran across all ports from
3/1/2021 to 4/5/2021. The speed was used to calculate lags based on how far a port is from the Suez Canal.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.2: Country Model Regression Results Using Quantity Exposure.

Total Cargo Tanker
(1) (2) (3) (4) (5) (6)

Q Exposure × Crash -2.070∗∗ -2.582∗∗ -1.463 -2.045∗ 1.235 1.667
(0.832) (1.013) (1.090) (1.211) (1.135) (1.305)

Crash 0.142 0.162 -0.120
(0.179) (0.154) (0.191)

Country FE Yes Yes Yes Yes Yes Yes
Speed (km/h) 40 40 40 40 20 20
Observations 3,100 3,100 3,100 3,100 3,089 3,089

No. of Countries 90 90 90 90 90 90
R2 0.515 0.515 0.511 0.511 0.522 0.522

Notes: Dependent variable: Log Imports. Standard errors in parentheses. Regression ran across all countries from
3/1/2021 to 4/5/2021. The speed was used to calculate lags based on how far a country is from the Suez Canal.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Figure A.2: Dynamic model estimations.
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(b) Country-Level Estimation
Model ran from March 1, 2021 (-22 on the x-axis) to April 5, 2021 (12 on the x-axis). Gray region denotes the 95%
confidence interval. Vertical bars denote the start and end of the blockage.
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Table A.3: Time Fixed Effects Regression Results.

Port Country
(1) (2) (3) (4) (5) (6)

Exposure × Crash -0.921∗∗ -1.171∗∗∗ -1.067∗∗ -2.042∗∗ -2.435∗∗ -3.690∗∗∗
(0.435) (0.448) (0.459) (0.982) (1.108) (1.321)

Port FE Yes Yes Yes
Country FE Yes Yes Yes
Time FE Yes No Yes Yes No Yes

Ref. Time FE No Yes Yes No Yes Yes
Speed (km/h) 40 40 40 40 40 40
Observations 48,744 48,744 48,744 3,100 3,100 3,100

No. of Geo Effects 1,354 1,354 1,354 90 90 90
R2 0.520 0.519 0.521 0.524 0.519 0.529

Notes: Dependent variable: Log Imports. Standard errors in parentheses. Regression ran across all ports and
countries from 3/1/2021 to 4/5/2021. The speed was used to calculate lags based on how far a port is from the

Suez Canal. Ref. time represents time lagged based on how far a port or country is from the canal. Blank effects
mean they wouldn’t fit in the model.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.4: Regression Results Using Panama Exposure.

Port Country
(1) (2) (3) (4)

Panama Exposure × Crash 0.123 0.226 -0.242 -0.217
(0.361) (0.374) (0.840) (0.979)

Crash -0.041 -0.008
(0.035) (0.162)

Port FE Yes Yes
Country FE Yes Yes
Speed (km/h) 40 40 40 40
Observations 48,744 48,744 3,085 3,085

No. of Geo Effects 1,354 1,354 90 90
R2 0.518 0.518 0.513 0.513

Notes: Dependent variable: Log Imports. Standard errors in parentheses. Regression ran across all ports and
countries from 3/1/2021 to 4/5/2021. The speed was used to calculate lags based on how far a port is from the

Panama Canal. Blank effects mean they wouldn’t fit in the model.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Regression Results in 2019.

Port Country
(1) (2) (3) (4)

Exposure × Crash 0.179 0.024 0.157 -0.397
(0.373) (0.396) (0.913) (0.991)

Crash 0.041 0.146
(0.036) (0.097)

Port FE Yes Yes
Country FE Yes Yes
Speed (km/h) 40 40 40 40
Observations 48,780 48,780 3,113 3,113

No. of Geo Effects 1,355 1,355 90 90
R2 0.509 0.509 0.510 0.510

Notes: Dependent variable: Log Imports. Standard errors in parentheses. Regression ran across all ports and
countries from 3/4/2019 to 4/8/2019. The speed was used to calculate lags based on how far a port is from the

Suez Canal. Blank effects mean they wouldn’t fit in the model.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B Propagation Effects

Figure B.1: Estimated Propagation Effects in Including vs Excluding the ROW
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Estimated lower bound propagation effects of a 6-day stop to value-added that goes through the Suez Canal as a
percentage of final use by country including and excluding the rest of the world. Including the rest of the world

means assuming trade from them travels through the Suez Canal and excluding them means assuming it doesn’t.
Note that 100% is the maximum possible along the y-axis, not 1. Best fit line calculated using OLS.
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