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Abstract

Much of modern macroeconomics uses models that rely on representative agent assumptions.

This paper analyzes the effect of these assumptions on macroeconomic variables through a simple

model that introduces a hand-to-mouth agent to the economy. We find that this Two Agent

New Keynesian (TANK) model creates substantially different outcomes than a Representative

Agent New Keynesian (RANK) model that are much more volatile. We also find that in the

TANK, both fiscal and monetary policy have effects that aren’t seen from the RANK.

1 Introduction

Much of modern macroeconomic theory is based on the interactions of different representative

agents. Instead of the 336 million people in the US (“U.S. and World Population Clock” 2024),

a model will have a single “representative household” interact with a “representative firm” in a

“representative industry.” This assumption has a number of justifications, from pragmatic one

about model tractability to theoretic ones about aggregation (Hartley 1996), however it has meant

that historically most macroeconomic theory has ignored both how wealth and income distributions

arise and how unequal distributions affect an economy.
∗Replication files are available at https://github.com/GavinEngelstad/Spring2024MacroModeling. If you have

questions, contact gengelst@maclester.edu.
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This paper will peel back these representative agent assumptions and explore how economic

outcomes are affected by the addition of household heterogeneity to a model. It finds that rep-

resentative agent models misrepresent certain economic outcomes, especially related to levels of

volatility in the economy, and make misguided policy recommendations, especially in regard to

fiscal policy.

2 Literature Review

2.1 Representative Agent Macro

The first DSGE models used representative agents to simulate an economy where households owned

capital, worked an equilibrium number of hours, and made consumption decisions (Kydland and

Prescott 1982). When the model was altered to add unemployment, instead of adding a level of

heterogeneity to the model with different employed and unemployed households, it was done using

a labor lottery and probabilities (Hansen 1985; Rogerson 1988). These assumptions allowed for a

tractable model, even considering the weaker computational power, but meant that unemployed

and employed people were lumped together into a single agent in the model.

For the next two decades, research in macro was done by making modifications to this repre-

sentative agent foundation. The addition of different frictions, market structures, and interactions

between agents allowed economists to better analyze how the macroeconomy as a whole functioned,

but still, for the most part, ignored differences in agents of the same type (Clarida, Gali, and Gertler

1999; Smets and Raf Wouters 2003; Christiano, Eichenbaum, and Evans 2005; Smets and Rafael

Wouters 2007). This became the Representative Agent New Keynesian (RANK) model.

Representative agent modeling, however, has structural issues that cannot be addressed by just

adding more, increasingly complex frictions. Early in the development of these models, it was

known that the aggregation of heterogeneity to create a representative agent would always lead

to miscalculation of economic effects and was an oversimplification that weakened overall models

(Geweke 1985; Kirman 1992; Hands 2017). More recently, An, Chang, and Kim 2009 showed that

identically calibrated representative and heterogeneous agent models lead to different economic
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outcomes. These issues together mean, at least in part, an overreliance on these models may have

led economists to be unaware of the recession threat pre-great recession (Treeck and Sturn 2012).

2.2 Hand to Mouth Households

The simplest heterogeneous agent models have two different types of agents. Campbell and Mankiw

1989 was the first of such models, and split the households evenly into two groups, one of which

acted similar to a representative agent and the other acted in a “hand to mouth” manner, con-

suming everything they earned each period. It found that such a model was better able to match

consumption patterns than representative agent models.

This type of model became the Two-Agent New Keynesian (TANK) model. TANK models

have been used to explain why Ricardian equivalence can break and consumption increases with

government spending (Galí, López-Salido, and Vallés 2007), monetary policy can have unexpected

results (Bilbiie 2007; Walsh 2017), shocks can become amplified intertemporally (Bilbiie 2018),

and inequality arises (Troch 2014; Broer et al. 2016). A three-agent model (THRANK) similarly

finds that agent heterogeneity causes monetary policy shocks to be amplified and cause increasing

inequality (Eskelinen 2021). Essentially, these sorts of models find that heterogeneous agent model

foundations cause substantially different results than representative agent ones.

This paper will expand on this research and create a TANK that uses a Hand-to-Mouth house-

hold following Galí, López-Salido, and Vallés 2007. Using this type of model, we’ll be able to

analyze these same macroeconomic outcomes. We’ll focus on the effects of Government spending

and monetary policy shocks as well as aggregate volatility in the economy.

2.3 Real Heterogeneity

Despite having more differentiation than RANK models, TANK (and THRANK) models still suffer

from aggregating many individuals in the economy into just a handful of economic agents. The

alternative to this is a Heterogeneous Agent New Keynesian (HANK). These models assume there

is either a continuous distribution of agents (Preston and Roca 2007; McKay, Nakamura, and

Steinsson 2015; McKay and Reis 2016b; Kaplan, Moll, and Violante 2018; Bilbiie 2019; Acharya
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and Dogra 2020; Aliprantis, Carroll, and Young 2022)1 or a large finite number of them (Werning

2015; Auclert, Rognlie, and Straub 2023).

Households in HANK models tend to be more reactive, planing less for the future (McKay,

Nakamura, and Steinsson 2015; McKay and Reis 2016b; Kaplan, Moll, and Violante 2018), and,

after shocks, consume at levels that aren’t easily approximated by RANK models (Preston and Roca

2007; Werning 2015; Acharya and Dogra 2020). These sorts of models are also able to replicate

real-world wealth inequality, both for individuals (Auclert, Rognlie, and Straub 2023) and different

subsets of the population (Aliprantis, Carroll, and Young 2022).

We do see, however, that HANK models can be easily approximated by TANK models and

are exceptionally difficult to solve (Reiter 2009). Bilbiie 2018, using the HANK model outlined in

Bilbiie 2019, found that a TANK can approximate the monetary policy effects and inequality in a

simplistic HANK model. Debortoli and Galí 2018 found that TANKs can generally approximate

the aggregate outcomes of a HANK.

Therefore, in our analysis we’ll focus on comparisons between a RANK and TANK model. This

doesn’t include a complete layer of heterogeneity, but should be able to approximate the predictions

of a HANK and be much simpler to solve.

3 The Models

This paper will present two models, a RANK and a TANK, that are set up identically except for

the level of household heterogeneity. The RANK model uses a standard New-Keynesian setup.

The TANK model adds a hand-to-mouth representative household to the RANK. For the sake of

brevity, only the model setup and characterization are presented in the paper. For how the model

was solved, see Appendix A.

1. Which is then (typically, some papers like Bilbiie 2019 find an analytical solution) estimated using a large, finite
number of agents (Algan et al. 2014)
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3.1 Firms, the Government, and the Central Bank

Since the firm, government, and central bank problems are the same in both models, they’ll be

presented together.

Final Goods Firm. The model has a single representative, perfectly competitive final goods firm.

The final goods firm combines intermediate goods according to the production function

Yt =

(∫ 1

0
y
ψ−1
ψ

j,t dj
) ψ
ψ−1

where Yt is aggregate output and yj,t is output for the jth intermediate good.

The profit maximization problem gets that

yj,t = Yt

(
Pt
pj,t

)ψ
Pt =

(∫ 1

0
p1−ψj,t

) 1
1−ψ

where Pt is the aggregate price level of the model economy and pj,t is the price of the jth intermediate

good.

Intermediate Goods Firms. The model is populated by a unit continuum of monopolistically

competitive intermediate goods firms j ∈ [0, 1]. Each intermediate goods firm produces their variety

according to the production function

yj,t = Ztnj,t

where nj,t is the labor used to produce the jth intermediate good and Zt is the economy’s efficiency

and follows the stochastic process

logZt = ρZ logZt + εZ,t

where εZ,t ∼ N (0, σZ).
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The cost minimization problem gets that

Wt = ZtΛt

where Wt is the real wage and Λt is the real marginal cost of production across all intermediate

goods.

Each period, intermediate goods firms follow a Calvo rule and update prices with probability

1 − θ (Calvo 1983). When updating their price, firms pick P ∗
t to maximize expected profits from

then until they are allowed to update their price again. Therefore,

P ∗
t

Pt
=

ψE
∑∞

s=t θ
s−tR−1

t,sΛsYs

(
Ps
Pt

)ψ
(1− ψ)E

∑∞
s=t θ

s−tR−1
t,s Ys

(
Ps
Pt

)ψ−1
.

where Rt,s is the real net return on bonds between periods t and s.

Since these firms are monopolistically competitive, they can make a profit. Each firm j uses

this profit to finance dividends dj,t to households such that

dj,t = yj,tpj,t − PtWtnj,t.

Firms Aggregated. Using the intermediate goods firm pricing rule and the final goods firm price

aggregator, we get

1 = θπψ−1
t + (1− θ)

(
P ∗
t

Pt

)1−ψ

where πt is inflation and equal to

πt =
Pt
Pt−1

.

Additionally, defining aggregate labor usage Nt as

Nt =

∫ 1

0
nj,t
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means the intermediate goods firm production function becomes

Yt = ZtNt.

Finally, defining the aggregate real dividends Dt as

Dt =

∫ 1
0 dj,tdj
Pt

and integrating the expression for dividends gets

Dt = Yt −WtNt.

Government. The role of the government is to hold some amount of debt, Bt, spend according

to the rule

Gt = Ytgt

where gt is an exogenous variable that evolves according to

gt = ρggt−1 + (1− ρg)g + εg,t

where εg,t ∼ N (0, σg), and impose a lump sum tax on households to finance interest on debt and

spending such that

Tt +Bt = Rt−1Bt−1 +Gt.

Central Bank. The Central Bank sets the interest rate according to the simple Taylor rule

It = Rπωt ξt

where R is the target real interest rate, ξt is a stochastic monetary policy shock that follows

log ξt = ρξ log ξt−1 + εξ,t,
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and It is the net nominal interest rate such that

Rt = E
It
πt+1

.

This follows McKay and Reis 2016b and excludes the normal output gap coefficient to simplify the

model.2

3.2 RANK Model

The RANK follows a standard New-Keynesian setup with a lifetime-optimizing representative

household.

Representative Household. The Representative Household has preferences given by

∞∑
t−1

βtU(Ct, Lt)

where Ct is consumption and Lt is the amount of labor supplied by the household. The utility

function is given by

U(Ct, Lt) =
C1−η
t

1− η
− ϕ

L1+χ
t

1− χ
.

Each period, the household has the budget constraint

Ct +Bt = Rt−1Bt−1 +WtLt +Dt − Tt

where Bt is the real bond holdings of the household.

Solving the household maximization problem gets the Euler Equation

1 = βRtE
Cηt
Cηt+1

and intratemporal condition

ϕLχt C
η
t =Wt.

2. Many other New-Keynsian papers zero out the exponent to that coefficient to similar effect (Sims and Wu 2019).
This just makes it more explicit.
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Market Clearing. Market clearing requires the goods market to clear

Yt = Ct +Gt

and the labor market to clear

Lt = Nt.

By Walrus’s law, we’ll ignore the bond market.

Competitive Equilibrium. From these, a competitive equilibrium of the model is a set of wages

{Wt}∞t=0, household allocations {Ct, Lt, Bt}∞t=0 that satisfy the household conditions

Ct +Bt = Rt−1Bt−1 +WtLt +Dt − Tt

Wt = ϕLχt C
η
t

1 = βRtE
Cηt
Cηt+1

,

firm allocations {Yt, Nt,Λt, Dt, πt,
P ∗
t
Pt

}∞t=0 that satisfy the conditions for the final and intermediate

goods firms

Λt = ZtWt

1 = θπψ−1
t + (1− θ)

(
P ∗
t

Pt

)1−ψ

P ∗
t

Pt
=

ψE
∑∞

s=t θ
s−tR−1

t,sΛsYs

(
Ps
Pt

)ψ
(1− ψ)E

∑∞
s=t θ

s−tR−1
t,s Ys

(
Ps
Pt

)ψ−1

Yt = ZtNt

Dt = Yt −WtNt,
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government allocations {τt, Gt}∞t=0 that satisfy the government conditions

Gt +Rt−1Bt−1 = Tt +Bt

Gt = Ytgt,

and Central Bank allocations {It, Rt}∞t=0 that satisfy the Taylor Rule and real interest rate definition

It = Rπωt ξt

Rt = E
It
πt+1

such that the goods and labor markets clear

Yt = Ct +Gt

Lt = Nt

subject to the exogenous processes

logZt = ρZ logZt−1 + εZ,t

log ξt = ρξ log ξt−1 + εξ,t

gt = ρggt−1 + (1− ρg)g + εg,t.

To solve the system, we use Linear Time Iteration from Rendahl 2017 to find a policy function

around the zero inflation steady state. For more information, see Appendix B.1.

3.3 TANK Model

The TANK is identical to the RANK except for the addition of “Hand-to-Mouth” (HtM) households.

These households don’t optimize intertemporally and instead just consume everything they have

each period.

Hand-to-Mouth Households. HtM households make up a fraction µ of the population and
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don’t have access to the bond market. Therefore, each period they maximize utility given by

U =
CH1−η
t

1− η
− ϕ

LH1+χ
t

1 + χ

where CHt is consumption by HtM households and LHt is labor supplied by HtM households subject

to the budget constraint

CHt =WtL
H
t +Dt − Tt.

Therefore, their intratemporal constraint is

Wt = ϕLHχt CHηt .

Saver Households. “Saver” households make up 1− µ of the population and have access to the

bond market to optimize intertemporally. They have preferences given by

∞∑
t−1

βtU(CSt , L
S
t )

where CSt is consumption of savers, LSt is the amount of labor supplied by savers, and

U(Ct, Lt) =
CS1−ηt

1− η
− ϕ

LS1+χt

1− χ
.

Each period, savers have the budget constraint

CSt +BS
t = Rt−1B

S
t−1 +WtL

S
t +Dt − Tt

where BS
t is the real bond holdings of the saver.

The household maximization problem gets the Euler Equation

1 = βRtE
CSηt

CSηt+1
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and intratemporal condition

(1− τt)Wt = ϕLSχt CSηt .

Households Aggregated. Aggregate consumption is given by

Ct = µCHt + (1− µ)CSt .

Aggregate labor supply is given by

Lt = µLHt + (1− µ)LSt .

Finally, aggregate bonds are given by

Bt = (1− µ)BS
t .

Market Clearing. Market clearing requires the goods market to clear

Yt = Ct +Gt,

and the labor market to clear

Nt = Lt.

By Walrus’s law, we’ll ignore the bond market.

Competitive Equilibrium. A competitive equilibrium is a set of real wages {Wt}∞t=0, HtM

household allocations {CHt , LHt }∞t=0 that satisfy the HtM household conditions

CHt =WtL
H
t +Dt − Tt

Wt = ϕLHχt CHηt ,
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saver household allocations {CSt , LSt , BS
t }∞t=0 that satisfy the saver household conditions

CSt +BS
t = Rt−1B

S
t−1 +WtL

S
t +Dt − Tt

Wt = ϕLSχt CSηt

1 = βRtE
CSηt

CSηt+1

,

aggregate household indicators {Ct, Lt, Bt}∞t=0 that satisfy the definitions

Ct = µCHt + (1− µ)CSt

Lt = µLHt + (1− µ)LSt

Bt = (1− µ)BS
t ,

firm allocations {Yt, Nt,Λt, Dt, πt,
P ∗
t
Pt

}∞t=0 that satisfy the conditions for the final and intermediate

goods firms

Λt = ZtWt

1 = θπψ−1
t + (1− θ)

(
P ∗
t

Pt

)1−ψ

P ∗
t

Pt
=

ψE
∑∞

s=t θ
s−tR−1

t,sΛsYs

(
Ps
Pt

)ψ
(1− ψ)E

∑∞
s=t θ

s−tR−1
t,s Ys

(
Ps
Pt

)ψ−1

Yt = ZtNt

Dt = Yt −WtNt,

government allocations {Tt, Gt}∞t=0 that satisfy the conditions for the government

Gt +Rt−1Bt−1 = Tt +Bt

Gt = gtYt,
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and Central Bank allocations {It, Rt}∞t=0 that satisfy the Taylor Rule and real interest rate definition

It = Rπωt ξt

Rt = E
It
πt+1

such that the goods and labor markets clear

Yt = Ct +Gt

Nt = Lt

subject to the exogenous processes

logZt = ρZ logZt−1 + εZ,t

log ξt = ρξ log ξt−1 + εξ,t

gt = ρggt−1 + (1− ρg)g + εg,t.

To solve the system, we use Linear Time Iteration from Rendahl 2017 to find a policy function

around the zero inflation steady state. For more information, see Appendix B.2.

4 Calibration

The main goal with our calibration in this paper is to have a consistent framework to make compar-

isons between the two models. Therefore, to calibrate the model, we’ll pick values to be consistent

with other literature instead of trying to match the real world as closely as possible. Our calibrated

values are in Table 4.1. These parameter values are chosen based on McKay and Reis 2016b, McKay

2018, and Galí, López-Salido, and Vallés 2007.
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Parameter Value Description RANK TANK
β 0.995 Household Intertemporal Discounting ✓ ✓
η 1 Relative Risk Aversion Parameter ✓ ✓
ϕ 2 Importance of Leisure Relative to Consumption ✓ ✓
χ 2 Inverse Frisch Elasticity of Labor ✓ ✓
ψ 6 Elasticity of Substitution Between Varieties ✓ ✓
θ 0.75 Calvo Rule Parameter ✓ ✓
ω 1.5 Taylor Rule Inflation ✓ ✓
R 1.005 Goal Real Interest Rate ✓ ✓
ρZ 0.95 Zt Regression to Steady State ✓ ✓
σZ 0.01 Standard Deviation in εZ,t ✓ ✓
ρξ 0.8 ξt Regression to Steady State ✓ ✓
σξ 0.01 Standard Deviation in εξ,t ✓ ✓
g 0.25 Steady State Government Fraction of Output ✓ ✓
ρg 0.9 gt Regression to Steady State ✓ ✓
σg 0.01 Standard Deviation in εg,t ✓ ✓
µ 0.5 Fraction of HtM Households ✓
B 0 Steady State Bonds ✓

Table 4.1: Parameter Values in the Models

5 Results

5.1 Government Spending Shock

The consumption responses to a government spending shock are shown in Figure 5.1. In the RANK,

we see a slight drop in consumption that slowly converges to the steady state value, consistent

with what would be expected by Ricardian Equivalence. In the TANK, we see a sharp increase

in consumption directly after the shock, but this increase isn’t sustained, and consumption very

quickly converges to the RANK value.

This change is entirely driven by the change in consumption by HtM households. After the

shock, saver households follow Ricardian Equivalence and never consume more than steady state

consumption in response to the shock. HtM households, however, experience a sudden, sharp

increase in consumption.

This makes sense, since Ricardian Equivalence is driven by households optimizing based on

expectations about taxes in the future. In this case, since HtM households don’t optimize or make

decisions intertemporally, it holds that Ricardian equivalence should break for HtM households and
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Figure 5.1: Consumption Response to Government Spending Shock

overall when there is a large enough fraction of the population that’s HtM.

To test this idea, we also run the model with µ set to 0.25 and 0.75. In this way, we get to test

whether there is a critical mass of HtM households for which we observe this break in Ricardian

Equivalence.

The results to this are shown in Figure 5.2. We see that with all values for µ > 0, we ob-

serve a similar increase in consumption, but with a lower µ, Ricardian equivalence still holds and

consumption never goes above the steady state value. Specifically, with µ = 0.25, the period 2

level of consumption is about 0.12% below steady state. This is higher than in the RANK, which

is about 0.17% below the steady state, but still means that the increase in government spending

never caused a corresponding increase in consumption.
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Figure 5.2: Consumption Response to Government Spending Shock by µ

Interestingly, we see limited consumption difference between period 2 consumption when µ = 0.5

and µ = 0.75. We do, however, see Ricardian equivalence break in the first period as well with

the higher µ and take longer to converge to the consumption path for the RANK. This suggests

that a higher mass of HtM households will significantly affect when the consumption increase will

happen, but will only marginally affect the maximum magnitude of the increase.

Therefore, consistent with Galí, López-Salido, and Vallés 2007, we find that with a sufficiently

high mass of HtM households, Ricardian equivalence can break and that suggest fiscal policy can

be an effective tool to spur increases in consumption, albeit temporarily.

5.2 Interest Rate Shock

In response to a monetary policy shock, the TANK has a much stronger disinflation response than

the RANK (Figure 5.3). This, through our Taylor Rule, causes the interest rate to rapidly decrease

and then increase prior to stabilizing towards the steady state. The RANK, in contrast, has a

relatively smooth response to the shock, with an uptick in the interest rate immediately at the

start before converging to the steady state.

This large Taylor Rule response to an interest rate shock explains the weird behavior of the

TANK in response to an interest rate shock. In contrast to the RANK, which rapidly changes at

the period of the shock then slowly converges towards the steady state, both inflation and output

in the TANk have significant, sudden declines to values well below the RANK, then approach the
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(a) Interest Rate
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(b) Inflation
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(c) Output
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Figure 5.3: Response to Interest Rate Shock

steady state much more quickly.

This is consistent with the idea of an “inverted Taylor Principle” from Bilbiie 2007, which

finds that, depending on parameterization, a TANK can have abnormal behavior in response to a
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monetary policy shock through this inflation response mechanism causing the interest rate response

to flip. Therefore, we find that TANKs can have weirder, less predictable behavior than RANKs

in response to interest rate shocks.

5.3 TFP Shock

The response to a consumption shock on output and agent-level consumption is shown in Figure

5.4.

After the shock, we observe a much sharper immediate increase in consumption in the TANK

compared to the RANK, likely due to the fact that the HtM portion of the households in the TANK

aren’t optimizing intertemporally and therefore aren’t consumption smoothing. The RANK, much
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Figure 5.4: Output Response to TFP Shock
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like with the other variables after other shocks, has a gradual, sustained decrease in output that

converges back to the steady state.

Like we saw with the government spending shock, much of this change is driven by changes

in consumption patterns for HtM households. In contrast, savers retain a similar post-shock con-

sumption pattern to the representative household in the RANK,3 with some slight kinks at the

start, probability caused by the macroeconomic effects of the dramatic changes in behavior by the

HtM households.

Curiously, the labor effect is driven by the opposite agent. Figure 5.5 shows the labor impacts

of the shock. Like would be expected with log preferences,4 labor supply in the RANK remains

constant after the TFP shock. In the TANK, however, we observe the labor supply increasing, then

decreasing, then converging to the steady state.

Looking at the agent-level breakdown of the shock, we observe that saver agents drive most of

this, and HtM agents have a comparatively small change in labor supply.5 This is likely because

saver households make their labor decisions based on both what they want to consume today and

their expected consumption in the next period, so their level of savings, expected inflation, and the

interest rate all play a role in this decision, not just the wage like for the HtM household. This

multitude of potentially volatile factors that play into the decision for how much savers work mean

that the decision becomes much more volatile.

Therefore, agent-level behavior causes aggregate variables in a TANK are much more volatile

in response to a TFP shock than in a RANK.

5.4 Simulation

To analyze the difference in aggregate economic outcomes in the RANK versus the TANK, we’ll

run a 1,000 period simulation of both economies with the same paths for the stochastic variables

(Figure D.1). In this way, we see the differences in economic outcomes for the RANK and TANK

subject to the same shocks.

3. Which, since gt isn’t affected by the shock is proportional to RANK Y .
4. With η = −1, the FOCs for the utility function are the same as would be expected with log preferences, meaning

that’s essentially what we’re solving here.
5. This effect could be seen in LHt vs LSt graphs for the other shocks too; it’s not unique to a TFP shock.
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The first 100 periods of this simulation are shown in Figure 5.6. Across the board, we see the

RANK and TANK follow approximately the same paths, but the TANK is much more volatile than

the RANK.

Looking at the agent breakdown, we see this volatility in consumption is primarily driven

by HtM households, but the volatility in labor supply instead comes from saver households. This

suggests that savers exhibit consumption smoothing as expected but, likely because of a combination

of volatility in wages, inflation, and the real interest rate, all of which are substantial in the TANK,

change how much labor they’re willing to supply quite often throughout the simulation.

The statistics in Table 5.1 show this same idea. Across all variables, the means of the macroe-

conomic variables are about the same between the two models, but the standard deviations in the
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Figure 5.5: Labor Response to TFP Shock
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Figure 5.6: Aggregate Economic Variables from First 100 Periods of 1,000 Period Simulation

TANK are substantially larger in the TANK than the RANK. We also see that consumption for

HtM agents is more volatile with a standard deviation almost 2.5 times that of savers, but labor
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RANK TANK
Mean St. Dev. Mean St. Dev.

Yt 0.821 0.030 0.821 0.052
Nt 0.822 0.014 0.822 0.046
— LHt 0.822 0.028
— LSt 0.822 0.068
Ct 0.617 0.022 0.617 0.039
— CHt 0.617 0.071
— CSt 0.617 0.029
Gt 0.204 0.010 0.204 0.015
πt 1.000 0.020 1.000 0.036
Wt 0.833 0.047 0.834 0.140
It 1.005 0.014 1.005 0.038
Rt 1.005 0.004 1.005 0.017

Table 5.1: Simulation Summary Statistics

supply is more volatile for savers.

These simulation results are substantially more volatile than the real world (Kydland and

Prescott 1982), meaning better calibration or parameter estimation is needed for this TANK to be

a viable model for analyzing the real world, but does suggest that RANK models will misestimate

aggregate economic outcomes.

6 Conclusion

Representative agent assumptions are ubiquitous in macroeconomic modeling since they make

model construction and solution much easier, but are flawed. In this paper, we found that even the

simplest addition of heterogeneity will cause alternate economic outcomes after policy intervention

and more volatility in the economy.

Especially important is this papers ideas relating to the effectiveness of fiscal policy at increasing

consumption and breaking Ricardian equivalence. It’s known that HtM-style households do exist

in the real world (Aguiar, Bils, and Boar 2023), so the fact that the addition of this style of

agents to the model makes fiscal policy more effective means governments and policymakers have

an additional tool to affect the economy in potentially desirable ways.
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This paper also finds that monetary policy may have unexpected effects within a TANK than a

RANK, suggesting central banks should use more complex models with more layers of heterogeneity

when they set interest rates to avoid unexpected results.

6.1 Limitations

This paper has a number of limitations that affect its analysis.

First, the primary goal of the model calibration was to make sure the two models were set up

uniformly, not to perfectly match the real world. This means that more work needs to go into

model calibration and parameterization before the results from this paper should hold any real

policy relevance. At a basic level, this could involve a better thought out parameter values or could

include the application of Bayesian methods to the model to fit the parameters.

Second, the model in the paper still makes use of representative agents. Although it has more

heterogeneity than a RANK, our TANK only has two agents in it that are divided in a very specific

way. A fully heterogeneous model could better analyze how representative agent assumptions effect

our models than the TANK presented in this paper.

6.2 Further Work

Extensions to the models presented in this paper should look at addressing these limitations,

both through better parameter fitting and the addition of more layers of heterogeneity. This could

include letting agents switch between being HtM and savers like in Bilbiie 2019 or abandoning HtM

agents altogether and modeling productivity differences or idiosyncratic unemployment (McKay,

Nakamura, and Steinsson 2015; McKay and Reis 2016b; Acharya and Dogra 2020).

24



Appendices

A Notes on the Model’s Derivation

This follows Section 3 expanding on the methods used to derive the model. For clarity, equations

that show up in Section 3 are numbered.

A.1 Firms, the Government, and the Central Bank

Final Goods Firm. Take the final goods firm production function

Yt =

(∫ 1

0
y
ψ−1
ψ

j,t dj
) ψ
ψ−1

(A.1.1)

and profit maximization condition

max
yj,t

PtYt −
∫ 1

0
pj,tyj,tdj.

Substituting the production function into the profit maximization condition gets

max
yj,t

Pt

(∫ 1

0
y
ψ−1
ψ

j,t dj
) ψ
ψ−1

−
∫ 1

0
pj,tyj,tdj

which has the FOC

(
ψ − 1

ψ

)(
ψ

ψ − 1

)
y
ψ−1
ψ

−1

j,t Pt

(∫ 1

0
y
ψ−1
ψ

j,t dj
) ψ
ψ−1

−1

= pj,t.

Simplifying and rearranging this gets

y
− 1
ψ

j,t =
pj,t
Pt

(∫ 1

0
y
ψ−1
ψ

j,t dj
) −1
ψ−1

=
pj,t
Pt
Y

− 1
ψ

t .

Raising this all to the −ψ gets

yj,t = Yt

(
Pt
pj,t

)ψ
. (A.1.2)
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Plugging Equation A.1.2 into Equation A.1.1 gets

Yt =

∫ 1

0

(
Yt

(
Pt
pj,t

)ψ)ψ−1
ψ

dj


ψ
ψ−1

=

(∫ 1

0
Y

ψ−1
ψ

t

(
Pψ−1
t

pψ−1
j,t

)
dj
) ψ

ψ−1

=

(
Y

ψ−1
ψ

t Pψ−1
t

∫ 1

p
p1−ψj,t dj

) ψ
ψ−1

= YtP
ψ
t

(∫ 1

p
p1−ψj,t dj

) ψ
ψ−1

.

Dividing both sides by YtPψt gets

P−ψ
t =

(∫ 1

p
p1−ψj,t dj

) ψ
ψ−1

which becomes the expression for the aggregate price level

Pt =

(∫ 1

p
p1−ψj,t dj

) 1
1−ψ

. (A.1.3)

Intermediate Goods Firms. Taking the intermediate goods production function

yj,t = Ztnj,t, (A.1.4)

and demand for the jth intermediate good in Equation A.1.2 and combining them gets

Yt

(
Pt
pj,t

)ψ
= Ztnj,t.
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This means the cost minimization problem becomes

min
nj,t

Wtnj,t

subject to Yt

(
Pt
pj,t

)ψ
= Ztnj,t

which has the Lagrangian

L =Wtnj,t + λj,t

(
Yt

(
Pt
pj,t

)ψ
− Ztnj,t

)
.

This gets the FOC

Wt = Ztλj,t

where λj,t is the real marginal cost for the production of intermediate good j. Since the produc-

tion function is linear and identical across goods, λj,t = λj′,t for all intermediate goods j and j′.

Therefore, we define Λt = λj,t and get

Wt = ZtΛt. (A.1.5)

Following Calvo 1983, intermediate goods firms update prices with probability 1 − θ. When

updating prices, intermediate goods firms solve

max
P ∗
t

E
∞∑
s=t

θs−tR−1
t,s

(
P ∗
t

Ps
yj,s −Wsnj,s

)
subject to Ws = ZsΛs

Zsnj,s = yj,s

yj,s = Ys

(
Ps
P ∗
t

)ψ
.
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Plugging the first condition into the expression gets

max
P ∗
t

E
∞∑
s=t

θs−tR−1
t,s

(
P ∗
t

Ps
yj,s − ZsΛsnj,s

)
subject to Zsnj,s = yj,s

yj,s = Ys

(
Ps
P ∗
t

)ψ
.

This becomes

max
P ∗
t

E
∞∑
s=t

θs−tR−1
t,s

(
P ∗
t

Ps
yj,s − Λsyj,s

)

subject to yj,s = Ys

(
Ps
P ∗
t

)ψ
.

which becomes

max
P ∗
t

E
∞∑
s=t

θs−tR−1
t,s

(
Ys

(
Ps
P ∗
t

)ψ−1

− ΛsYs

(
Ps
P ∗
t

)ψ)
.

This has the FOC

0 = E
∞∑
s=t

θs−tR−1
t,s

(
(ψ − 1)YsP

ψ−1
s P ∗−ψ

t + ψΛsYsP
ψ
s P

∗−ψ−1
t

)
= E

∞∑
s=t

(1− ψ)θs−tR−1
t,s YsP

ψ−1
s P ∗−ψ

t + E
∞∑
s=t

ψθs−tR−1
t,sΛsYsP

ψ
s P

∗−ψ−1
t

= (1− ψ)P ∗−ψ
t E

∞∑
s=t

θs−tR−1
t,s YsP

ψ−1
s + ψP ∗−ψ−1

t E
∞∑
s=t

θs−tR−1
t,sΛsYsP

ψ
s .

Reorganizing this gets

(1− ψ)P ∗−ψ
t E

∞∑
s=t

θs−tR−1
t,s YsP

ψ−1
s = ψP ∗−ψ−1

t E
∞∑
s=t

θs−tR−1
t,sΛsYsP

ψ
s

which becomes

P ∗
t =

ψE
∑∞

s=t θ
s−tR−1

t,sΛsYsP
ψ
s

(1− ψ)E
∑∞

s=t θ
s−tR−1

t,s YsP
ψ−1
s

.
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Dividing both side by Pt gets

P ∗
t

Pt
=

ψE
∑∞

s=t θ
s−tR−1

t,sΛsYs

(
Ps
Pt

)ψ
(1− ψ)E

∑∞
s=t θ

s−tR−1
t,s Ys

(
Ps
Pt

)ψ−1
. (A.1.6)

To solve the problem, it’ll also be helpful to define

PAt =
ψ

ψ − 1
E

∞∑
s=t

θs−tR−1
t,sΛsYs

(
Ps
Pt

)ψ
=

ψ

ψ − 1
ΛtYt + θR−1

t Eπψt+1P
A
t+1

PBt = E
∞∑
s=t

θs−tR−1
t,s Ys

(
Ps
Pt

)ψ−1

= Yt + θR−1
t Eπψ−1

t+1 P
B
t+1

so that
P ∗
t

Pt
=
PAt
PBt

.

Firms Aggregated. Based on the Calvo rule, we know each period θ of the firms keep their old

price and (1− θ) change pries to P ∗
t . Therefore,

Pt =

(∫ 1

p
p1−ψj,t dj

) 1
1−ψ

=

(
θ

∫ 1

0
p1−ψj,t−1dj + (1− θ)

∫ 1

0
P ∗1−ψ
t dj

) 1
1−ψ

=
(
θP 1−ψ

t−1 + (1− θ)P ∗1−ψ
t

) 1
1−ψ

.
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Dividing by Pt, this becomes

1 =

(
θP 1−ψ

t−1 + (1− θ)P ∗1−ψ
t

) 1
1−ψ

Pt

=

(
θP 1−ψ

t−1 + (1− θ)P ∗1−ψ
t

P 1−ψ
t

) 1
1−ψ

=

(
θ

(
Pt−1

Pt

)1−ψ
+ (1− θ)

(
P ∗
t

Pt

)1−ψ
) 1

1−ψ

=

(
θπψ−1

t + (1− θ)

(
P ∗
t

Pt

)1−ψ
) 1

1−ψ

which, since the left hand side is 1, means

1 = θπψ−1
t + (1− θ)

(
P ∗
t

Pt

)1−ψ
(A.1.7)

Combining Equation A.1.2 and Equation A.1.4 gets

Yt

(
Pt
pj,t

)ψ
= Ztnj,t.

Integrating both sides gets

∫ 1

0
Yt

(
Pt
pj,t

)ψ
dj =

∫ 1

0
Ztnj,tdj

Yt

∫ 1

0

(
Pt
pj,t

)ψ
dj = ZtNt
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which by defining

St =

∫ 1

0

(
Pt
pj,t

)ψ
dj

= θ

∫ 1

0

(
Pt

pj,t−1

)ψ
dj + (1− θ)

∫ 1

0

(
Pt
P ∗
t

)ψ
dj

= θ

∫ 1

0

(
Pt−1Pt

pj,t−1Pt−1

)ψ
dj + (1− θ)

∫ 1

0

(
Pt
P ∗
t

)ψ
dj

= θ

(
Pt
Pt−1

)ψ ∫ 1

0

(
Pt−1

pj,t−1

)ψ
+ (1− θ)

(
Pt
P ∗
t

)ψ
St = θSt−1

(
Pt
Pt−1

)ψ
+ (1− θ)

(
Pt
P ∗
t

)ψ

as the efficiency loss due to price dispersion following McKay and Reis 2016a gets

YtSt = ZtNt.

In the paper, we present the equation as

Yt = ZtNt (A.1.8)

excluding St since it is equal to 1 in a first order approximation (McKay 2018). We can show this

by loglinearizing the expression to get

SssŜt = θSssπ
ϕ
ss(ŜT + ψπ̂t) + (1− θ)

(
Pss
P ∗
ss

)ψ
(ψP̂t − ψP̂ ∗

t ).

Using πss = Pss
P ∗
ss

= 1 in the steady state gets

Sss − θSss = 1− θ.

Additionally, rearranging the loglinear version of the nominal price condition

P 1−ψ
t = θP 1−ψ

t−1 + (1− θ)P ∗1−ψ
t
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gets

P̂t = θP̂t−1 + (1− θ)P̂ ∗
t

and plugging in the equation for inflation gets

(1− θ)(P̂t − P̂ ∗
t ) = −θ(P̂t − P̂t−1)

= −θπ̂t

Plugging πss = Pss
P ∗
ss

= Sss = 1 and (1− θ)(P̂t − P̂ ∗
t ) = −θπ̂t into the expression gets

Ŝt = θŜT + ψθπ̂t − ψθπ̂t = θŜT

which means Ŝt = 0 and St = Sss = 1. Therefore, the expression for St and the St in the aggregate

production function can be ignored.

Plugging the demand for yj,t into the firm dividend expression

dj,t = pj,tyj,t − PtWtnj,t

gets

dj,t = pj,tYt

(
Pt
pj,t

)ψ
− PtWtnj,t

= YtP
ψ
t p

1−ψ
j,t − PtWtnj,t.

Integrating both sides means

∫ 1

0
dj,tdj =

∫ 1

0
YtP

ψ
t p

1−ψ
j,t − PtWtnj,tdj

PtDt = YtP
ψ
t

∫ 1

0
p1−ψj,t dj − PtWt

∫ 1

0
nj,tdj.
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Plugging in the aggregate price and labor equations into this gets

Dt = Yt −WtNt. (A.1.9)

A.2 RANK Model

Representative Household. The representative household solves

max
{Ct,Lt,Bt}∞t=0

E
∞∑
t=0

βtU(Ct, Lt)

subject to Ct +Bt = Rt−1Bt−1 +WtLt +Dt − Tt.

This has the Lagrangian

L =
∞∑
t−1

βt (U(Ct, Lt) + λ1,t(Rt−1Bt−1 +WtLt +Dt − Tt − Ct −Bt))

which has the FOCs

λ1,t = Uc(Ct, Lt) (Ct)

λ1,t =
−UL(Ct, Lt)

Wt
(Lt)

λ1,t = βRtEλ1,t+1. (Bt)

Combining these at λ1,t gets the intratemporal condition

Wt =
−UL(Ct, Lt)
Uc(Ct, Lt)

and Euler equation

UC(Ct, Lt) = βRtEUC(Ct+1, Lt+1)

1 = βRtE
UC(Ct+1, Lt+1)

UC(Ct, Lt)
.
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Since the utility function

U(Ct, Lt) =
C1−η
t

1− η
− ϕ

L1+χ
t

1− χ
(A.2.1)

has the FOCs

UC(Ct, Lt) = C−η
t (Ct)

UL(Ct, Lt) = −ϕLχt , (Lt)

these become the Euler Equation

1 = βRtE
Cηt
Cηt+1

(A.2.2)

and intratemporal condition

ϕLχt C
η
t =Wt. (A.2.3)

A.3 TANK Model

Hand-to-Mouth Households. Each period, HtM households solve

max
CHt ,L

H
t

U(CHt , L
H
t )

subject to CHt =WtL
H
t +Dt − Tt.

This gets the Lagrangian

L = U(CHt , L
H
t )− λ2,t(WtL

H
t +Dt − Tt − CHt )

which has the FOCs

λ2,t = UC(C
H
t , L

H
t ) (CHt )

λ2,t =
−UL(CHt , LHt )

Wt
(LHt )
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Combining these at λ2,t gets the intratemporal condition

Wt =
−UL(CHt , LHt )
UC(CHt , L

H
t )

Using the utility function
CH1−η
t

1− η
− ϕ

LH1+χ
t

1 + χ
(A.3.1)

with FOCs

UC(C
H
t , L

H
t ) = CH−η

t

UL(C
H
t , L

H
t ) = −ϕLHχt

gets the intratemporal condition

Wt = ϕLHχt CHηt . (A.3.2)

Saver Households. Each period, the saver household solves

max
CSt ,L

S
t ,Bt

E
∞∑
t=0

βtU(CSt , L
S
t )

subject to CSt +BS
t = Rt−1B

S
t−1 +WtL

S
t +Dt − Tt.

This gets the Lagrangian

L = E
∞∑
t=0

βt
(
U(CSt , L

S
t ) + λ3,t

(
Rt−1B

S
t−1 +WtL

S
t +Dt − Tt − CSt −BS

t

))
which has the FOCs

λ3,t = Uc(C
S
t , L

S
t ) (CSt )

λ3,t =
−UL(CSt , LSt )

Wt
(LSt )

λ3,t = βRtEλ1,t+1. (BS
t )
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Combining at λ3,t gets the intratemporal condition

Wt =
−UL(CSt , LSt )
UC(CSt , L

S
t )

and Euler Equation

UC(Ct, Lt) = βRtEUC(Ct+1, Lt+1)

1 = βRtE
UC(Ct+1, Lt+1)

UC(Ct, Lt)
.

Plugging in the utility function
CS1−ηt

1− η
− ϕ

LS1+χt

1 + χ
(A.3.3)

with FOCs

UC(C
S
t , L

S
t ) = CS−ηt

UL(C
S
t , L

S
t ) = −ϕLSχt

gets the intratemporal condition

Wt = ϕLSχt CSηt (A.3.4)

and Euler Equation

1 = βRtE
CSηt

CSηt+1

. (A.3.5)

B Solution Methods

B.1 RANK Solution

Solution System. Before we solve the system from Section 3.2, we’ll make a couple modifications

to make it tractable and simplify it. First, we’ll replace P ∗
t
Pt

with PAt
PBt

and add the definitions to the

system. We’ll also eliminate the labor market clearing conditions and plug Nt in for Lt everywhere.

Finally, we’ll plug in the dividend expression and government budget into the household budget to
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get

Ct +Bt = Rt−1Bt−1 +WtNt + Yt −WtNt +Bt −Rt−1Bt−1 −Gt

which then substituting the goods market clearing condition means

Ct +Bt = Rt−1Bt−1 +WtNt + Ct +Gt −WtNt +Bt −Rt−1Bt−1 −Gt

which simplifies to 0 = 0. Therefore, we exclude the government and household budgets and

eliminate Tt and Bt from the system.

Therefore, our solution is the set {Wt, Yt, Ct, Nt, Gt,Λt, πt, P
A
t , P

B
t , It, Rt}∞t=0 that satisfies

Wt = ϕNχ
t C

η
t

1 = βRtE
Cηt
Cηt+1

Λt = ZtWt

1 = θπψ−1
t + (1− θ)

(
PAt
PBt

)1−ψ

PAt =
ψ

ψ − 1
ΛtYt + θR−1

t Eπψt+1P
A
t+1

PBt = Yt + θR−1
t Eπψ−1

t+1 P
B
t+1

Yt = ZtNt

Gt = gtYt

It = Rπωt ξt

Rt = E
It
πt+1

Yt = Ct +Gt
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subject to the exogenous processes

logZt = ρZ logZt−1 + εZ,t

log ξt = ρξ log ξt−1 + εξ,t

gt = ρggt−1 + (1− ρg)g + εg,t.

Steady States. In the steady state, we know

Wss = ϕNχ
ssC

η
ss

1 = βRss
Y η
ss

Y η
ss

Λss = ZssWss

1 = θπψ−1
ss + (1− θ)

(
PAss
PBss

)1−ψ

PAss =
ψ

ψ − 1
ΛssYss + θR−1

ss π
ψ
ssP

A
ss

PBss = Yss + θR−1
ss Eπψ−1

ss PBss

Yss = ZssNss

Gss = gssYss

Iss = Rπωssξss

Rss =
Iss
πss

Yss = Css +Gss

Since we’re assuming a zero-inflation steady state, we know πss = 1. Furthermore, the steady

state for the exogenous shocks Zss = ξss = 1 and gss = g.

The second equation means

Rss =
1

β
.
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The tenth then means

Iss = Rss =
1

β
.

The fourth equation gets

1− θ = (1− θ)

(
PAss
PBss

)1−ψ

which becomes

1 =

(
PAss
PBss

)1−ψ

which means

PAss = PBss .

The fifth equation becomes

(1− βθ)PAss =
ψ

ψ − 1
ΛssYss

and, using PAss = PBss , the sixth equation becomes

(1− βθ)PAss = Yss.

Together, these mean

Yss =
ψ

ψ − 1
ΛssYss

which gets

Λss =
ψ − 1

ψ
.

By the third equation, we know

Wss = Λss =
ψ − 1

ψ
.
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The seventh, eighth, and eleventh equations get

Nss = Yss

Gss = gYss

Css = (1− g)Yss

which substituted into the first equation means

ψ − 1

ψ
= ϕY χ

ss ((1− g)Yss)
η

= ϕ(1− g)ηY χ+η
ss

which means

Y χ+η
ss =

ψ − 1

(1− g)ηψϕ
.

Therefore,

Yss =

(
ψ − 1

(1− g)ηψϕ

) 1
χ+η

.

This combined with our expressions for Nss, Gss, Css, PAss, and PBss in terms of Yss get us the
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steady state of the RANK,

gss = g

πss = 1

Zss = 1

ξss = 1

Iss =
1

β

Rss =
1

β

Λss =
ψ − 1

ψ

Wss =
ψ − 1

ψ

Yss =

(
ψ − 1

(1− g)ηψϕ

) 1
χ+η

Nss =

(
ψ − 1

(1− g)ηψϕ

) 1
χ+η

Gss = g

(
ψ − 1

(1− g)ηψϕ

) 1
χ+η

Css = (1− g)

(
ψ − 1

(1− g)ηψϕ

) 1
χ+η

PAss =

(
ψ−1

(1−g)ηψϕ

) 1
χ+η

1− βθ

PBss =

(
ψ−1

(1−g)ηψϕ

) 1
χ+η

1− βθ

To solve the model, we use the Jacobian of the system evaluated at this steady state and Linear

Time Iteration from Rendahl 2017.

B.2 TANK Solution

Solution System. Similar to the RANK, before we solve the system from Section 3.3, we’ll

make a couple modifications to make it tractable and simpler. First, we’ll add PAt and PBt and
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their definitions into the system and replace P ∗
t
Pt

with PAt
PBt

. Next, we’ll eliminate Bt and Lt from the

system and plug in the expressions Bt = (1−µ)BS
t and Lt = µLHt +(1−µ)LSt for them everywhere.

Finally, we’ll eliminate Dt from the system and plug its definition in everywhere it shows up. This

means the HtM budget constraint becomes

CHt =Wt(L
H
t −Nt) + Yt − Tt

and the saver budget becomes

CSt +BS
t = Rt−1Bt−1 +Wt(L

S
t −Nt) + Yt − Tt.

Thus, our solution is the set {Wt, Yt, Ct, C
H
t , C

S
t , Nt, L

H
t , L

S
t , B

S
t , Gt, Tt,Λt, πt, P

A
t , P

B
t , It, Rt}∞t=0
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that satisfies

CHt =Wt(L
H
t −Nt) + Yt − Tt

Wt = ϕLHχt CHηt

CSt +BS
t = Rt−1B

S
t−1 +Wt(L

S
t −Nt) + Yt − Tt

Wt = ϕLSχt CSηt

1 = βRtE
CSηt

CSηt+1

Λt = ZtWt

1 = θπψ−1
t + (1− θ)

(
PAt
PBt

)1−ψ

PAt =
ψ

ψ − 1
ΛtYt + θR−1

t Eπψt+1P
A
t+1

PBt = Yt + θR−1
t Eπψ−1

t+1 P
B
t+1

Yt = ZtNt

Gt +Rt−1(1− µ)BS
t−1 = Tt + (1− µ)BS

t

Gt = gtYt

It = Rπωt ξt

Rt = E
It
πt+1

Nt = µLHt + (1− µ)LSt

Ct = µCHt + (1− µ)CSt

Yt = Ct +Gt

subject to the exogenous processes

logZt = ρZ logZt−1 + εZ,t

log ξt = ρξ log ξt−1 + εξ,t

gt = ρggt−1 + (1− ρg)g + εg,t.
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Steady States. In the steady state, we know

CHss =Wss(L
H
ss −Nss) + Yss − Tss

(1− τss)Wss = ϕLHχss C
Hη
ss

CSss +BS
ss = RssB

S
ss +Wss(L

S
ss −Nss) + Yss − Tss

(1− τss)Wss = ϕLSχt CSηss

1 = βRss
CSηss

CSηss

Λss = ZssWss

1 = θπψ−1
ss + (1− θ)

(
PAss
PBss

)1−ψ

PAss =
ψ

ψ − 1
ΛssYss + θR−1

ss π
ψ
ssP

A
ss

PBss = Yss + θR−1
ss π

ψ−1
ss PBss

Yss = ZssNss

Gss +Rss(1− µ)BS
ss = Tss + (1− µ)BS

ss

Gss = gssYss

Iss = Rπωssξss

Rss =
Iss
πss

Nss = µLHss + (1− µ)LSss

Css = µCHss + (1− µ)CSss

Yss = Css +Gss

Since we’re loglinearizing around the zero-inflation steady state, we know πss = 1. Furthermore,

the steady state for the exogenous shocks Zss = ξss = 1 and gss = g. We’ll also need to define

Bss = B, which means BS
ss =

B
1−µ .

The fifth equation means

Rss =
1

β
.
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It follows from the fourteenth equation that

Iss = Rss =
1

β
.

The seventh equation gets

1− θ = (1− θ)

(
PAss
PBss

)1−ψ

which becomes

1 =

(
PAss
PBss

)1−ψ

which means

PAss = PBss .

The eighth equation becomes

(1− βθ)PAss =
ψ

ψ − 1
ΛssYss

and, using PAss = PBss , the ninth equation becomes

(1− βθ)PAss = Yss.

Together, these mean

Yss =
ψ

ψ − 1
ΛssYss

which gets

Λss =
ψ − 1

ψ
.

By the sixth equation, we know

Wss = Λss =
ψ − 1

ψ
.
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We have

Nss = Yss

from the tenth equation,

Gss = gYss,

from the twelfth,

Css = (1− g)Yss,

from the seventeenth, and

Tss =
1− β

β
B + gYss

from the eleventh.

Using what we know, the second equation means

LHss =

(
ψ − 1

ψϕ

) 1
χ

C
H− η

χ

t

and the fourth means

LSss =

(
ψ − 1

ψϕ

) 1
χ

C
S− η

χ

t .

Using these, the aggregators from the fifteenth and sixteenth equations, and the first equation,

we get the system

LHss =

(
ψ − 1

ψϕ

) 1
χ

C
H− η

χ

t

LSss =

(
ψ − 1

ψϕ

) 1
χ

C
S− η

χ

t

µLHss + (1− µ)LSss =
µCHss + (1− µ)CSss

1− g

CHss − CSss +
1− β

(1− µ)β
B =

ψ − 1

ψ
(LHss − LSss)

which we solve using Newton’s Method.
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Therefore, the steady state of the RANK is

gss = g

Bss = B

πss = 1

Zss = 1

ξss = 1

Iss =
1

β

Rss =
1

β

Λss =
ψ − 1

ψ

Wss =
ψ − 1

ψ

Css = µCHss + (1− µ)CSss

Yss =
µCHss + (1− µ)CSss

1− g

Nss = µLHss + (1− µ)LSss

Gss = g

(
µCHss + (1− µ)CSss

1− g

)
PAss =

µCHss + (1− µ)CSss
(1− g)(1− βθ)

PBss =
µCHss + (1− µ)CSss
(1− g)(1− βθ)

Tss =
1− β

β
B + g

(
µCHss + (1− µ)CSss

1− g

)

where CHss , CSss, LHss, and LSss come from Newton’s method.
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C Calibration

Based on the steady state versions of the Euler equation and the Taylor Rule, we get

Iss =
1

β
= R.

Therefore, our calibrated values are chosen to create this equivalence.
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D Results

D.1 Simulation
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Figure D.1: Stochastic Paths for Our Simulation
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